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1. Introduction
Under the guidance of Dr. Luiz Felipe Vecchietti, the main
objectives of the internship are to (1) perform an antibody
reconstruction analysis and (2) contribute to the writing
of a review paper on antigen-conditioned antibody design
methods, with a focus on the diffusion-based architectures.
For the first objective, a model named cg2all (Heo & Feig,
2023), which is developed for protein structure reconstruc-
tion, is used to reconstruct antibody structures from the
coarse-grained representations to the full-atom reconstruc-
tion, followed by an error analysis on the whole and each
region in the antibody variable domain. The results of this
part are to be submitted for the Korea Software Conference
(KSC) 2023. For the second objective, the review paper is
prepared for a submission to Nature Machine Intelligence
Review this year, where my role is emphasized on literature
survey, searching for additional recent references, organiz-
ing references, paper draft writing, and the generation of
figures and tables. The objective of the review paper is to
review recent antigen-conditioned antibody design methods,
with a bias to recent antigen-conditioned methods that con-
tain the antigen-antibody complex structure and generate the
structure using graph-based and diffusion-based methods.

Apart from the two main objectives, some other objectives
include (1) the development of protein structure coordi-
nate interconversion method, (2) data augmentation with
RFdiffusion (Watson et al., 2023), and (3) the development
of full-atom diffusion-based antigen-conditioned antibody
design model. The first objective aims to develop an al-
gorithm to convert protein structures from their external
coordinates (i.e., Cartesian coordinates) to internal coor-
dinates (e.g., angles), which is a common practice used
within protein-related AI model architectures. The second
objective aims to tackle the biggest issue in the development
of antigen-conditioned antibody design models: the lack
of antigen-antibody complex data. By using the recently
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developed RFdiffusion (Watson et al., 2023), we attempt
to generate antigens that would bind to some given anti-
body structures in a natural manner via setting the binding
hotspots. Following that, some analysis is done by utiliz-
ing ProteinMPNN (Dauparas et al., 2022) and AlphaFold2
(AF2) Multimer (Jumper et al., 2021). The third objective
aims to develop an antibody design model that is antigen-
conditioned, diffusion-based, and with a full atom approach
(in contrast to backbone). A relevant recent model would be
AbDiffuser (Martinkus et al., 2023), which uses a full-atom
diffusion-based approach, but is unconditioned.

The short-term targets for this internship is a submission to
KSC and Nature Machine Intelligence Review, while the
long-term target is a submission to International Conference
on Learning Representations (ICLR).

2. Antibody Reconstruction Analysis
This section contains the three-page paper draft that will
be submitted for KSC 2023 in October 2023 under the ti-
tle ”Evaluation of Antibody Structure Reconstruction With
SE(3)-Equivariant Graph-Based Method”. Refer to Ap-
pendix A for more results.

2.1. Abstract

Recently, graph and diffusion-based methods have achieved
breakthrough results in protein structure reconstruction.
Among them, cg2all, an SE(3)-equivariant graph-based
method, allows the recovery of all-atom protein structures
from various coarse-grained models. As reducing antibody
structures to a coarse-grained representation can signifi-
cantly improve computational efficiency in its structural
studies, having an effective reconstruction model can accel-
erate the development of new methods in antibody design.
In this paper, we conduct an evaluation of the cg2all archi-
tecture in reconstructing antibody structures and identify the
factors influencing the performance. Compared to its per-
formance in general proteins, cg2all has a poorer side chain
recovery performance for antibodies. cg2all performance is
influenced by the chosen coarse-grained representation com-
plexity, but is not affected by the variability of the antibody
regions.
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2.2. Introduction

Antibodies play an integral role in our immune system, and
their high specificity and diversity offer an opportunity for
the development of new therapeutics and vaccines (Yin &
Pierce, 2023). However, like general proteins, exploiting
the nature of antibodies requires an atomistic level of struc-
ture resolution which can be achieved through experimen-
tal methods like X-ray crystallography, nuclear magnetic
resonance spectroscopy (NMR), and cryogenic electron mi-
croscopy (cryo-EM), and computational methods that work
on their all-atom (AA) representation (Heo & Feig, 2023).
This has led to crucial limitations because such atomistic
modeling is computationally expensive. For this, various
attempts have been made reduce the AA representation of
protein structures to coarse-grained (CG) representations
with reduced complexity and minimum information loss
(Marrink et al., 2007; Gopal et al., 2010).

Many models have since then been developed to recon-
struct protein structures from their CG model (Heo & Feig,
2023; Yang & Gómez-Bombarelli, 2023; Jones et al., 2023).
Recently, Heo et al. (Heo & Feig, 2023) proposed an SE(3)-
equivariant graph neural network (GNN)-based approach,
named cg2all, which allows protein structure reconstruction
from various CG models, including those with only one
particle per residue (PPR).

In this study, we aim to evaluate the performance of cg2all
in reconstructing antibody structures from their CG repre-
sentation, determine the best performing CG model for this
architecture, and propose possible improvements to enhance
its performance. Compared to the original work (Heo &
Feig, 2023), we achieve a similar backbone (BB) root-mean-
square difference (RMSD) when the model is evaluated on
antibodies, but an increase in the heavy atom RMSD and a
drop in the accuracy of side chain χ angles is observed. For
a more comprehensive benchmarking, we also evaluated the
local distance difference test (lDDT) score (Mariani et al.,
2013) and template modeling (TM)-score (Zhang & Skol-
nick, 2004) and separately analyze each complementarity-
determining region (CDR) and framework region (FR) of
the antibody structures as they have different variability,
which may affect the reconstruction. We observe that the
Protein Intermediate Model (PRIMO) (Gopal et al., 2010)
CG representation gives the overall best performance and
that the region variability does not seem to have a significant
influence on the performance.

2.3. Background

The cg2all model uses an SE(3)-equivariant GNN architec-
ture, adopting SE(3)-Transformers (Fuchs et al., 2020) at its
interaction module, for the reconstruction of AA detail from
various CG representations of protein structure (Heo & Feig,
2023). Its architecture consists of initialization, interaction,

and structure modules in series. The model receives node
(i.e., residue) features consisting of residue type, scalar fea-
tures, and vector features at its initialization module, whose
output is supplied as an input to the interaction module to-
gether with edge (i.e., interaction) features consisting of
edge type and inter-node distance, whose output is input
to the structure module. The structure module extends the
concept applied in AlphaFold2 (Jumper et al., 2021) using
rigid-body blocks to generate 3D structures and additionally
applies physical constrains to make realistic AA structures
(Heo & Feig, 2023).

This model allows the reconstruction of protein structure
from various CG representations, such as the traces of Cα
atoms, BB (Cα, C, and N), main chain (Cα, C, N, and O),
center of mass (CM) of each residue, Cα and the residue
CM, and more complex CG models like MARTINI (Mar-
rink et al., 2007) and PRIMO (Gopal et al., 2010), which
represent the protein structure with a maximum of 1, 3, 4,
1, 2, 5, and 8 PPR, respectively (Heo & Feig, 2023). The
MARTINI approach creates the CG representation via a
systematic parametrization based on thermodynamic data,
especially experimental partitioning data, where one particle
roughly represents four heavy atoms of the corresponding
AA structure (Marrink et al., 2007). On the other hand,
the PRIMO approach does so by considering the standard
molecular bonding geometries based on the hybridization
states of distinct atoms, where a residue is typically repre-
sented by three to eight particles (Gopal et al., 2010).

2.4. Methodology

2.4.1. EVALUATION DATASET

We obtained the complete list of 14,827 redundant antibody-
antigen (Ab-Ag) complexes from the Structural Antibody
Database (SAbDab) (Dunbar et al., 2014) on July 7, 2023.
The list is then preprocessed using the methodology pre-
sented by Kong et al. in Multi-channel Equivariant Atten-
tion Network (MEAN) (Kong et al., 2022) with k = 0 fold
to obtain a list of 6,504 nonredundant antibodies with se-
quence and structure data obtained from the Protein Data
Bank (PDB) (Berman et al., 2000) under the international
ImMunoGeneTics information system (IMGT) (Lefranc
et al., 2005) numbering system. For efficiency, we evaluate
the cg2all performance by considering only the variable
domain of the antibody, which is mostly responsible for the
docking with the epitope of the antigen. Hence, we further
preprocessed the list to get the individual sequence and AA
structure of the variable domain of the heavy chain (VH ),
the variable domain of the light chain (VL), and the concate-
nation of the two (VHL) for each distinct antibody in the
list.
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2.4.2. DECONSTRUCTION AND RECONSTRUCTION
FRAMEWORKS

The deconstruction of each of the VH , VL, and VHL of
the antibodies to their CG representations is done with the
convert all2cg command in the cg2all conda environment.
Similarly, the reconstruction from each CG representation
is done with the convert cg2all command. This process is
done in the CPU as the loading of the pretrained model
checkpoint to the GPU serves as a bottleneck in the recon-
struction process, making reconstruction faster in the CPU
for structures of moderate size (Heo & Feig, 2023).

The deconstruction and reconstruction of COVA2-04 (PDB
ID: 7jmo) using the all2cg and cg2all frameworks, respec-
tively, is illustrated in Fig. 1 as an example, where the pro-
cess is done with the Cα-based model (top) and PRIMO
(bottom), using at most 1 and 8 PPR, respectively (Heo &
Feig, 2023; Gopal et al., 2010).

Figure 1. De/reconstruction of COVA2-04 VHL with Cα-based
(top) and PRIMO (Gopal et al., 2010) (bottom) CG models using
all2cg and cg2all.

2.4.3. PERFORMANCE ANALYSIS

To compare our results with the statistics for general proteins
presented in the original work (Heo & Feig, 2023), we
similarly analyzed the backbone RMSD, heavy atom RMSD,
and the accuracy of the side chain χ1 and χ2 angles. We
additionally evaluated the percent error of these angles, the
lDDT score (Mariani et al., 2013), and the TM-score (Zhang
& Skolnick, 2004), where the latter two are modified to
reflect on all heavy atoms instead of only the Cα atoms in
order to capture the local and global, respectively, structural
agreement of the side chains as well. Briefly, the two scores
both range from 0 to 1, where larger values indicate higher
similarity between the two structures.

The analysis is done for the overall variable domain (i.e.,
VH , VL, and VHL) and for each CDR and FR in the domain
to check whether the variability of each region influences the
performance of cg2all. For the second part, we isolated each
specific region of the reference and reconstructed variable
domain structures.

2.5. Results

2.5.1. ANALYSIS OF ANTIBODY VARIABLE DOMAIN
RECONSTRUCTION

The analysis results for the overall variable domain of the
antibodies is given in Table 1. Compared to (Heo & Feig,
2023), the heavy atom (HA) RMSD increases by about
0.84Å and the accuracy of the side chain χ angles decrease
substantially, indicating a relatively poor side chain con-
struction. We also noticed a prominent percent error for the
angles, especially for CG models that neglect the side chain
atoms. Nevertheless, the BB RMSD is similar to that in
(Heo & Feig, 2023). The local structural agreement from
the lDDT score (Mariani et al., 2013) for all CG models also
show a moderate similarity level and the global structural
agreement from the TM-score (Zhang & Skolnick, 2004)
achieve values above 0.8.

Among the CG models, we observed that PRIMO (Gopal
et al., 2010) has a superior performance, especially in terms
of the side chain χ angles, as it guarantees a minimum side
chain information loss due to a more complex scheme with
more PPR, capturing better representation of side chains.
We also noticed in Fig. 1 that PRIMO (Gopal et al., 2010)
performs better than the Cα-based model, especially in
terms of BB RMSD and the side chain χ angles.

It is shown in Table 1 that the CM and Cα+CM CG models
give a better accuracy of side chain χ angles compared
to the backbone (N, Cα, C) and main chain (N, Cα, C,
O) models despite using fewer PPR (1 and 2 vs. 3 and 4,
respectively). This is reasonable as the first two capture the
overall information of the side chain in the ”CM” particle,
while the latter two simply consider the BB atoms only
despite using more PPR.

2.5.2. ANALYSIS OF ANTIBODY CDR AND FR
RECONSTRUCTION

Because the original work emphasized on the sufficiency
of one PPR to reconstruct the AA structure, we provide the
VHL region-wise distribution plots for such a CG model,
namely the Cα-based model, in Fig. 2. Additionally, we
attach the same plots in Figure 3 for PRIMO (Gopal et al.,
2010), which has a superior performance as described in
2.5.1, for comparison.

As shown in Figures 2 and 3, there is no significant differ-
ence in the distributions between different regions of the
variable domain. The CDRs (especially CDRH3), which
are typically more variable than the FRs, exhibit an overall
similar distribution with the FRs. The same pattern is also
seen in the plots for other variable domains, other CG rep-
resentations, and other performance metrics, although they
are not shown here.
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Table 1. Reconstruction results with cg2all (Heo & Feig, 2023) for the overall antibody variable domains. Similarly to (Heo & Feig,
2023), the accuracy cutoff for the χ1 and χ2 angles is set to 30◦ with respect to the angle in the reference structure. The best result(s) for
each metric is shown in bold text.

CG Chain Backbone Heavy Atom χ1-Angle χ2-Angle χ1-Angle χ2-Angle lDDT TM-
Model Type RMSD [Å] RMSD [Å] Accur. [%] Accur. [%] Error [%] Error [%] Score Score

Cα HL 0.15 1.45 63.0 57.8 93.2 100.0 0.51 0.91
Cα H 0.15 1.48 62.2 58.5 91.3 91.6 0.51 0.88
Cα L 0.13 1.42 62.8 56.0 96.4 109.6 0.52 0.88

N, Cα, C HL 0.05 1.44 65.3 59.1 95.1 100.6 0.50 0.91
N, Cα, C H 0.05 1.47 64.8 59.6 96.9 94.9 0.50 0.88
N, Cα, C L 0.03 1.41 65.4 57.5 94.8 108.8 0.52 0.88

N, Cα, C, O HL 0.05 1.43 64.5 58.8 93.3 110.1 0.50 0.91
N, Cα, C, O H 0.04 1.46 64.6 60.4 91.5 97.4 0.51 0.88
N, Cα, C, O L 0.03 1.40 64.2 56.5 94.6 125.3 0.52 0.88

CM HL 0.22 1.39 70.4 65.0 72.0 94.9 0.55 0.92
CM H 0.23 1.40 70.6 66.1 72.3 91.6 0.55 0.89
CM L 0.20 1.35 70.4 64.2 71.7 97.8 0.56 0.88

Cα + CM HL 0.09 1.38 75.6 66.0 59.4 93.3 0.52 0.92
Cα + CM H 0.10 1.39 75.4 67.2 59.0 86.3 0.53 0.89
Cα + CM L 0.08 1.34 76.2 65.1 59.5 101.4 0.54 0.88
MARTINI HL 0.09 1.38 81.5 81.2 48.7 50.8 0.52 0.92
MARTINI H 0.08 1.39 81.4 83.4 46.5 42.4 0.53 0.89
MARTINI L 0.07 1.34 81.6 79.3 50.6 59.9 0.54 0.88

PRIMO HL 0.05 1.40 94.1 93.2 17.1 16.9 0.51 0.91
PRIMO H 0.05 1.42 94.3 93.8 16.2 13.0 0.51 0.88
PRIMO L 0.04 1.37 94.0 92.6 17.9 22.2 0.52 0.88

Similar to our observation in 2.5.1, comparing Figures 2(a)
to 3(a), 2(c) to 3(c), and 2(d) to 3(d) show that the PRIMO
(Gopal et al., 2010) CG model gives a lower BB RMSD and
a higher accuracy of χ1 and χ2 angles, respectively, with
respect to the Cα-based model. Additionally, we noticed in
Figure 3(c) that the CDRs exhibit a near perfect χ1 angle
accuracy, indicating that the side chains of CDRs are better
reconstructed than FRs in PRIMO (Gopal et al., 2010).

Figure 2. Region-wise distributions of (a) BB and (b) heavy atom
RMSDs and (c) χ1 and (d) χ2 angle accuracies of the reconstruc-
tion from the Cα-based CG model of the VHL structures.

Figure 3. Region-wise distributions of (a) BB and (b) heavy atom
RMSDs and (c) χ1 and (d) χ2 angle accuracies of the reconstruc-
tion from the PRIMO (Gopal et al., 2010) CG model of the VHL

structures.

2.6. Conclusion

In this paper, we evaluated the performance of cg2all (Heo &
Feig, 2023) in reconstructing the antibody variable domains
from various CG representations. Although the model pre-
serves the BB accuracy as indicated by the low BB RMSD,
it has a lower performance in side chain reconstruction for
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antibodies with respect to the results for general proteins
presented in (Heo & Feig, 2023), especially for CG rep-
resentations which particles do not reflect the side chains.
Additionally, we showed that the variability of each region
in the variable domains has no influence on the model perfor-
mance, thus opening possible research directions for archi-
tecture improvements and training data to reflect antibody
characteristics. To improve the model, enhancements in the
structure module of cg2all (Heo & Feig, 2023) to not only
make realistic AA structures, but to also mimic the side
chain distribution in native protein structures is given as a
future direction.

3. A Review on AI-Based Antibody Design
The review paper is tentatively organized into eight sections,
namely (1) introduction, (2) antibody structure prediction
(folding), (3) antibody sequence design (inverse folding), (4)
antibody representation learning, (5) antibody design, (6)
predictors: binding affinity, stability, thermostability, and
immunogenicity, (7) discussion, and (8) conclusion. The
main emphasis of this paper is in the fifth section, antibody
design, which is further divided into unconditioned antibody
design (or, antibody optimization) and antigen-conditioned
antibody design. The latter subsection is then further divided
into graph-based and diffusion-based methods.

3.1. Progress

The draft for the introduction section has been written and
Dr. Felipe has established the overall paper logic for other
sections. The draft and details of the review paper is orga-
nized in Notion, which public access is currently restricted,
and the references are organized in Google Drive. At the
time this report is written, a total of three figures for the re-
view paper have been designed, which are Figure 4, Figure
5, and Figure 6.

Figure 4. Four levels of protein structure.

3.2. Literature Survey

As my role in the writing of the review paper is more focused
on the diffusion-based antigen-conditioned antibody design,
I have intensively read some relevant papers related to the
topic, among others, as this is also related to my additional

Figure 5. Antibody structure and antibody-antigen complex inter-
action with highlight for interaction between CDRs and antigen.

objective in Section 6. The summary of some of the works
discussed in this subsection can be accessed in my Notion
page. One notable diffusion-based antigen-conditioned an-
tibody design method is DiffAb (Luo et al., 2022), which
designs a specific CDR of the antibody framework, condi-
tioned on a target antigen. However, the work represents
the antibody and antigen structures as their Cα coordinates
instead of their full atom representation. The authors also
did not further validate whether the antibody designs made
by the model are biologically effective in binding the target
antigen via wet lab experiments. A more recent work is Ab-
Diffuser (Martinkus et al., 2023), which is probably the first
full-atom diffusion-based antibody design model to date. It
claims to use a novel architecture that allows a linear model
complexity, which is very promising for the further develop-
ment of full-atom models, while allowing variable antibody
chain lengths via the utilization of the structure learning-
based AHo numbering system. Particularly, this antibody
numbering system allows a maximum of 149 residues for
each antibody chain and has an additional residue type that
functions as a ”gap”. With this, chains with fewer than 149
residues would simply have multiple ”gap” residues, which
is a brilliant approach. Nevertheless, this model generates
antibody based on the learned distribution from the antibody
dataset with no conditioning of target antigen and the source
code is not released at the time of this report writing, so it
might be difficult to further improve this model.

More works have been done in the design of a more gen-
eral protein using diffusion models, such as the work in
(Anand & Achim, 2022) which pioneers the diffusion-based
protein design, FoldingDiff (Wu et al., 2022) which uses
diffusion-based model to design proteins with a biological
intuition by mimicking how proteins are volded in vitro,
SMCDiff (Trippe et al., 2022), SE(3)-Diffusion (Yim et al.,
2023), NOS (Gruver et al., 2023), Genie (Lin & AlQuraishi,
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Figure 6. Illustration of (a) antibody representation learning, (b) antibody structure prediction (folding), (c) antibody sequence design
(inverse folding), (d) unconditioned antibody design, (e) antigen-conditioned antibody design, and (f) antibody evaluation.

2023), and the recently developed RFdiffusion (Watson
et al., 2023). An interesting work on a more general dif-
fusion model (i.e., not specialized for protein or antibody)
was also studied, namely LGD-MC (Song et al., 2023),
which shows a possible application for conditioned pro-
tein/antibody design via loss-guided diffusion with Monte
Carlo approximation. Among these, FoldingDiff (Wu et al.,
2022) uses an interesting and promising novel approach,
but the proposed model currently only works for single
chains so it does not handle complexes or multiple chains.
In addition, the generated proteins are relatively shorter than
naturally occurring proteins and the generation of protein is
not conditioned. Hence, this provides quite a vast room for
improvement, which shall be explored in our objective in
Section 6. RFdiffusion (Watson et al., 2023), on the other
hand, works on the backbone of the protein structure and is
quite complex and heavy as it uses separate model for each
specific task, such as motif scaffolding, partial diffusion,
binder design, symmetric oligomers generation, symmetric

motif scaffolding, etc. However, despite having a relatively
good design outcomes for proteins, the released model does
not work very well for antibodies, most likely due to the
different nature of antibodies (e.g., loop-rich structure) as
compared to general proteins. It is known that the team is
currently developing RFdiffusion Antibody, which is spe-
cialized for antibody design, and this is also the case for
Genie (Lin & AlQuraishi, 2023).

On the other hand, some notable works in the graph-based
antigen-conditioned antibody design are MEAN (Kong
et al., 2022) and its extended version, dyMEAN (Kong
et al., 2023). dyMEAN extends MEAN (Kong et al., 2022)
by expanding the architecture into an end-to-end model that
works with the full-atom approach by the introduction of the
geometric relation extractor and geometric message scaler in
its adaptive multi-channel equivariant encoder (Kong et al.,
2023).
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3.3. Future Plan

The future plan for this objective is to continue with the
paper writing and figure/table generation with a focus on
writing the draft for antibody structure prediction (folding)
and antigen-conditioned antibody design.

4. Protein Structure Coordinate
Interconversion

This objective deals with the reconstruction of protein three-
dimensional (backbone) atom coordinates into internal co-
ordinates and vice versa, where the main references are the
internal coordinates in Rosetta/PyRosetta and Biopython.
Internal coordinates are particularly important as this rep-
resentation is translation invariant and rotation invariant.
Figure 7 shows the simplified polypeptide chain structure
and the notations of internal coordinates, particularly in the
angle space.

Figure 7. Simplified polypeptide chain formation, torsion angles,
bond lengths, and bond angles.

4.1. Progress

One can develop a script for this objective by using
geometry-based approach, such as the implementations in
PyRosetta and Biopython, which is straightforward. To un-
derstand how Biopython generates internal coordinates from
the Cartesian coordinates, we attempted to conduct an ex-
periment with Biopython. However, due to some Biopython
version clashes in our conda environment as the internal
coordinates are implemented in a newer version, we were
unable to conduct this experiment.

Another way to approach this objective is by learning. After
some literature survey, one possible dataset that can be used

to train a model for this objective is SideChainNet (King &
Koes, 2020) as it provides Cartesian coordinates and internal
coordinates and is readily preprocessed for model training.

Assuming that we deal with the conversion from external to
internal coordinates first, some considered architectures are
as follows. First is to use a simple MLP-based architecture,
where the model inputs are the atom type A, residue type
RT , residue index RI , and the three-dimensional Cartesian
coordinates of the structure (X,Y, Z) and the model out-
puts are the the atom type, residue type, residue index, and
the relevant torsion angle ψ/φ/ω, bond angle θ, and bond
length d. In this sense, the loss function can tentatively be
written as in (1) where LMSE and LCE are mean-square
error loss and cross-entropy loss, respectively.

L = LMSE(ψ/φ/ω) + αLMSE(θ) + βLMSE(d)

+ γLCE(A) + δLCE(RT ) + εLCE(RI) (1)

Another approach is to use natural language processing
(NLP) architectures, such as recurrent neural network
(RNN) or long short-term memory (LSTM) network, in
an encoder/decoder manner like in translation task with
some attention mechanism, where the input, output, and
loss function is similar to the previous one. Other architec-
tures can be considered too, and given some architecture for
the external to internal coordinate conversion, the architec-
ture for the internal to external coordinate conversion can
be developed accordingly where the model input and output
are switched and the loss function takes a tentative form as
in (2).

L = LMSE(X) + αLMSE(Y ) + βLMSE(Z)

+ γLCE(A) + δLCE(RT ) + εLCE(RI) (2)

Another idea for improvement includes the consideration of
cycle loss (e.g., external to internal to external coordinates
or internal to external to internal coordinates) to make the
model perform better, which is implemented in CycleGAN
(Zhu et al., 2017).

4.2. Future Plan

The future plan for this objective is to get more familiar
with protein/antibody structures (e.g., a 3D point cloud of
atoms), comprehend the representation of Cartesian coordi-
nates by internal coordinates (distance, angles, orientation),
and create a script to convert from the three-dimensional
point cloud to internal coordinates and vice versa. For the
last part, we might consider only a coarse-grained represen-
tation of the protein, like backbone atoms, for simplicity.

For a more straightforward implementation, this objective
requires more of a hard coding with geometry rather than
ML-based knowledge, so it is of less priority compared to
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other objectives described in this report. Hence, as we de-
cided to focus our works more on the review paper writing
(Section 3), data augmentation (Section 5), and full-atom
diffusion-based antigen-conditioned antibody design (Sec-
tion 6), this objective is halted for the meantime.

5. Data Augmentation with RFdiffusion
This objective aims to address the question on how well
does RFdiffusion (Watson et al., 2023) generate antigens
that bind to a given antibody. Recently, many models have
been developed for antigen-conditioned antibody design.
However, as pointed out by Figure 6(e), training such mod-
els require a dataset of antigen-antibody complexes. Unfor-
tunately, this serves as a bottleneck of the performance of
these models as the amount of such data is very scarce since
it is difficult to obtain an experimental crystal structure of
antigen-antibody complexes. For this reason, if RFdiffusion
is able to generate acceptable antigen structures given some
antibody to bind with it, this would greatly help with data
augmentation by adding these in silico generated structures
to the complex dataset, hence accelerating the development
of such models.

5.1. Approach

As a preliminary experiment, given 10 randomly picked
samples of antibody variable domains synthetically made
with IgFold (Ruffolo et al., 2023), we attempt to use RFdif-
fusion (Watson et al., 2023) to generate antigen candidates
that will bind to the CDRs. Following that, we filter the
antigen candidates based on the pLDDT and i-pAE scores.
To do so, we use the binder design mode of RFdiffusion
(Watson et al., 2023), generate the sequence design with Pro-
teinMPNN (Dauparas et al., 2022), predict the structure with
AF2 Multimer (Jumper et al., 2021), then compare the two
structures for a sense of developability, that is, whether the
designed antigen structure is realizable using the naturally
occurring amino acids and whether the sequence design
would give a complex structure similar to the one predicted
by RFdiffusion. The developability test script is adopted
and modified from ColabDesign (Ovchinnikov et al.).

In our first attempt of the experiment, we generate five anti-
gen designs of length 70 100 amino acids (i.e., randomly
picked between this range) for each antibody using RFdiffu-
sion (Watson et al., 2023), generate eight sequence designs
for each antigen design by using ProteinMPNN (Dauparas
et al., 2022), then generate a complex structure prediction
for each sequence design by using AF2 Multimer (Jumper
et al., 2021). For the setting of hotspots (i.e., binding site),
we decided to use three choices, which are cdrh3 (i.e., all
the residues in CDRH3), cdr (i.e., every other residue in
all CDRs), and less (one or two residues picked at random
from each CDR and three residues from CDRH3). The first

choice is based on a domain knowledge that most bindings
occur at CDRH3. With this, a total of 1200 antigen-antibody
complexes generated, which is then filtered to only take
complexes with an interface predicted aligned error (i-pAE)
less than 10 and a predicted local distance difference test
(pLDDT) score above 0.8.

5.2. Preliminary Results

Our preliminary experiment results in seven antigen-
antibody complexes fulfilling both the i-pAE and pLDDT
score requirements, as shown in Table 2. These complexes
are shown in Figure 8.

From this result, we observed that in the cdrh3 hotspot
mode, the generated antigen focused too much on binding
with the CDRH3 but it is too far from other CDRs, which
is unnatural and is the reason for making the second choice
of hotspot (i.e., cdr). However, in the cdr hotspot, too
many residues to bind makes the generated antigen not
bind strongly to any of them at all so we additionally made
another hotspot choice (i.e., less). Nevertheless, in the less
mode, we picked the residues to bind at random so we may
have picked those that are not at the surface, so it still gives
poor results. Hence, we concluded that the definition of
hotspots is crucial to generate high quality antigen-antibody
complexes. We also noticed that AF2 Multimer (Jumper
et al., 2021) works poorly on predicting the structure of
antigen-antibody complexes because an extra experiment
showed that AF2 Multimer gave a poor structure prediction
profile for some complexes that actually bind well in wet
lab experiments.

Figure 8. Designed antigen-antibody complexes with pLDDT
above 0.8 and i-pAE less than 10. The antibody variable domains
are shown in green while the generated antigens are in light blue.

5.3. Future Plan

Despite having only a tiny subset of decent results, our
preliminary experiment shows that RFdiffusion (Watson
et al., 2023) is promising for data augmentation if given
the proper set of hotspot residues, given the naive approach
taken for the choice of hotspot residues. For this reason,
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Table 2. Profile of the designed antigen-antibody complexes with pLDDT above 0.8 and i-pAE less than 10.

Antibody Hotspot Design Idx Seq Idx MPNN pLDDT i-pTM i-pAE RMSD
ffc205e2d499cf247b78a4654dedd354 cdr 4 1 1.099 0.863 0.679 8.666 4.076
ffc205e2d499cf247b78a4654dedd354 cdr 4 4 1.177 0.870 0.688 8.753 4.011
ffc205e2d499cf247b78a4654dedd354 cdr 4 5 1.242 0.883 0.740 7.851 6.047
7fd0097ee65e316e9426d9df90e53c87 cdrh3 4 4 1.249 0.874 0.696 8.717 2.946
ffff7b975f9786914c51a550a252420b cdrh3 3 3 1.251 0.803 0.620 9.500 1.567
7fd0097ee65e316e9426d9df90e53c87 less 1 2 1.181 0.855 0.707 8.857 47.731
ffc205e2d499cf247b78a4654dedd354 less 1 2 1.323 0.867 0.706 8.506 31.508

in the future experiment, we plan to utilize the solvent ac-
cessible surface area (SASA) metric to check which CDR
residues of the antibody are located at the structure surface
and use this information to personalize the hotspot residues
for each antibody, which hopefully will better the quality of
the generated antigen-antibody complex via RFdiffusion.

6. Full-Atom Diffusion-Based
Antigen-Conditioned Antibody Design

This objective aims to develop an antibody design model
which is conditioned on a specific target antigen, based on
diffusion model, and uses the full atom approach (in contrast
to, for example, backbone approach), which will hopefully
be submitted for the ICLR.

6.1. Beyond FoldingDiff

Following the literature survey as described in Section 3.2,
we noticed the interesting novel approach in FoldingDiff
(Wu et al., 2022) that uses diffusion model for uncondi-
tioned protein design based on how proteins are folded in
vitro. We additionally pointed out several limitations in the
current version of the model, which provides a room for im-
provement, such as by specializing the model for antibody
design, adding the support for complexes or multiple chains,
allowing conditioned design, and so on. For this reason, by
combining the ideas from full-atom antibody design models
(Kong et al., 2023; Martinkus et al., 2023), diffusion-based
(antigen-conditioned) antibody design models (Luo et al.,
2022; Martinkus et al., 2023), diffusion-based protein de-
sign models (Anand & Achim, 2022; Trippe et al., 2022;
Yim et al., 2023; Gruver et al., 2023; Lin & AlQuraishi,
2023; Watson et al., 2023), and a loss-guided diffusion
model (Song et al., 2023), we aim to extend FoldingDiff
(Wu et al., 2022) model for an application in the full-atom
diffusion-based antigen-conditioned antibody design.

As a remark, AbDiffuser (Martinkus et al., 2023) and RFd-
iffusion (Watson et al., 2023) are also equally interesting,
but the first one has no released source code and the latter
one is quite complex with the original authors currently de-
veloping an extended version (i.e., RFdiffusion Antibody)
for antibody design purposes, so we decided to work on

the improvement of FoldingDiff (Wu et al., 2022) for our
purpose.

6.2. Future Plan

After some discussions with Dr. Felipe, the future plan for
this objective is to retrain and evaluate FoldingDiff (Wu
et al., 2022) for the antibody dataset (e.g., SAbDab (Dunbar
et al., 2014)), where data is clustered by sequence similarity
to create batches similar to DiffAb (Luo et al., 2022) or
MEAN (Kong et al., 2022). In addition, we would check
the distance error during reconstruction, how it affects the
protein structure generation, and whether it is worth adding
a predicted distance error for the reconstruction. Some other
changes that can be made to the model are modifications
such that it fixes angles in the FRs and generates only the
CDRs during generation, modifications to handle multiple
chains for antigen-conditioned generation (in such a case,
antigen angles should be fixed too), the usage of a num-
bering system like AHo in AbDiffuser (Martinkus et al.,
2023) to handle variable lengths, modifications for phys-
ical constraints to learn a sampler from the experimental
distributions for the angles rather than generating the angle
values directly, and modifications to the the loss function
such that a small error in the angle leads to a high error in
the overall structure while taking into account the down-
stream influence in the overall error of the structure. These
changes shall be made one-by-one like in ablation study to
see if such changes would improve the model or otherwise.

7. Closing Remarks
Throughout the internship program, two main objectives
and three side objectives are set, which are antibody re-
construction analysis, review of antibody design models,
protein structure coordinate interconversion, data augmen-
tation with RFdiffusion (Watson et al., 2023), and full-
atom diffusion-based antigen-conditioned antibody design.
Among these goals, the first one is near to completion as a fi-
nalized draft has been written, while others are still on-going
by the time this report is written. Apart from these objec-
tives, I also assisted the protein design team in script writing,
particularly a designability test script with ProteinMPNN
(Dauparas et al., 2022) and AF2 Multimer (Jumper et al.,
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2021) for Azamat to evaluate the DiffAb (Luo et al., 2022)-
designed mTie2 antibody structures in the mTie2-hTAAB
complex.

From these, I have learned the in silico aspects of protein
(especially antibody) design, the various coarse-grained rep-
resentations of proteins and antibodies to simplify models,
the external and internal coordinates of protein and antibody
structures, the concepts of the antibody and our immune
system, denoising diffusion probabilistic models (DDPM)
and its variations and applications in protein and antibody
design, and the basics of graph neural networks (GNNs)
and its applications in protein and antibody design, among
others. The future plan denoted at the end of each section in
this report shall be carried on in the following fall semester
of 2023, with possible changes depending on the research
progress.

Accessibility
All source codes and data of the works in this report are
accessible in the Data Science Group server under the
/home/intern/protein/bryan directory.
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A. More Antibody Reconstruction Analysis Results

Figure 9. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle accuracies,
(g) χ1 and (h) χ2 angle errors of the reconstruction from the Cα-based CG model of the VHL structures.

Figure 10. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the backbone CG model of the VHL structures.

Figure 11. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the main chain CG model of the VHL structures.
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Figure 12. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the residue-based CG model of the VHL structures.

Figure 13. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the Cα+CM-based CG model of the VHL structures.

Figure 14. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the MARTINI (Marrink et al., 2007) CG model of the VHL structures.
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Figure 15. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the PRIMO (Gopal et al., 2010) CG model of the VHL structures.

Figure 16. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the Cα-based CG model of the VH structures.

Figure 17. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the backbone CG model of the VH structures.
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Figure 18. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the main chain CG model of the VH structures.

Figure 19. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the residue-based CG model of the VH structures.

Figure 20. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the Cα+CM-based CG model of the VH structures.
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Figure 21. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the MARTINI (Marrink et al., 2007) CG model of the VH structures.

Figure 22. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the PRIMO (Gopal et al., 2010) CG model of the VH structures.

Figure 23. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the Cα-based CG model of the VL structures.
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Figure 24. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the backbone CG model of the VL structures.

Figure 25. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the main chain CG model of the VL structures.

Figure 26. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the residue-based CG model of the VL structures.
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Figure 27. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the Cα+CM-based CG model of the VL structures.

Figure 28. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the MARTINI (Marrink et al., 2007) CG model of the VL structures.

Figure 29. Region-wise distributions of (a) BB and (b) heavy atom RMSDs, (c) LDDT and (d) TM scores, (e) χ1 and (f) χ2 angle
accuracies, (g) χ1 and (h) χ2 angle errors of the reconstruction from the PRIMO (Gopal et al., 2010) CG model of the VL structures.
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