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Abstract

Enhancing the properties of a protein, or protein engi-
neering is crucial for pharmaceutical and industrial usages.
However, recent literature focus on sequence-based protein
representations and are only modeled to single protein fam-
ily as their proposed method require training with data for a
specific protein function. To tackle these problems, we pro-
pose and investigate a reinforcement learning-based protein
engineering framework that defines the action as a mutation
of a amino acid in a protein sequence. We show the prelim-
inary results of a surrogate reward network that model the
functionality of proteins using a sequence-based represen-
tation of a protein. We also discuss the next steps regarding
the implementation of our protein engineering framework.

1. Introduction
Proteins are complex molecules responsible for differ-

ent functions in the human body. Proteins are also an im-
portant part of products in the food, pharmaceutical, and
chemical industries. Protein engineering, or improving the
functions and properties of proteins, is critical for its effec-
tive usage in various applications (Fig. 1). Due to its sig-
nificance, extensive researches [2–4, 13] are held regarding
deep-learning based protein engineering. However, most of
these researches rely on models trained with data of a spe-
cific protein family, in a way that they are applicable only
to a single protein engineering problem. Treating the en-
gineering problems individually, i.e. designing models for
each protein family independently, is inefficient and is not
significantly faster than handcrafted protein engineering.

Reinforcement learning (RL) based protein engineering
can be a way to overcome part of these inefficiencies by
having a unique framework that is guided by suitable objec-
tive functions, dependent on the protein engineering goal.
Similar RL frameworks and algorithms have been applied
to games that have the same properties, so, we hypothesize
that a shared RL framework might be able to design dif-
ferent engineering objectives, for different protein families.
Until now, not many works have been done regarding RL-

Codes are available at github.com/protein-dscig/design.
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1. Introduction

Proteins are complex molecules responsible for different functions in the human 
body. Proteins are also an important part of products in the food, pharmaceutical, 
and chemical industries. Protein engineering, or improving a protein's function 
and properties, is critical for its effective usage in various applications. Protein 
engineering is accomplished by introducing a series of mutations from a wild-type 
amino acid sequence, i.e., the protein to be optimized. However, because the 
sequence space for a target function is usually sparse, assessing the quality of 
mutations is not trivial. Because the functionality to be optimized is directly guided 
by protein engineering, it is critical to accurately predict the change in functionality 
from experimental data. 
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Figure 3. Overview of the functionality prediction methods. 

Previous studies investigated the protein space by attempting to decipher their 
language: the amino acid sequence. These methods focus on obtaining a good 
representation of sequence using natural language processing models. However, 
they do not take the protein structure into account. The protein structure in 3-
dimensional space is closely related to its function. For example, the fold of 
avGFP is 11-stranded beta-barrels wrapped around a chromophore which emits 
fluorescence. The beta-barrels form a cylinder around the chromophore, which is 
thought to be responsible for the high yield of fluorescence and stability [1]. 

Recently, breakthrough results [2] were obtained via deep neural network for the 
protein structure prediction. Therefore we investigate the use of a structure-based 
representation for the prediction of green fluorescence in a protein. The structure 
of a mutant is obtained using a deep learning-based structure prediction network, 
and a feature vector representation is proposed by comparing the mutant 
structure to the wild-type structure. This feature vector is then used to train an 
explainable machine learning (ML) regressor for the green fluorescent functionality 
prediction. The proposed structure-based representation improves the regression 
accuracy when compared to the one-hot and sequence-based representation.

2. Methodology
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2.1 trRosetta structure prediction network

trRosetta [2] considers structure prediction as a classification problem of four 
features: distance between amino acids, i.e.,  distance,  dihedral, i.e., 
rotation along the virtual axis connecting the  atoms of two amino acids, and 
two angles specifying the direction of the  atom of one amino acid in a reference 
frame centered on another amino acid (Fig. 4). The  distance is discretized 
from a range of 2Å to 20Å with each bin size set to 0.5Å, also including one 
additional bin when the distance exceeds 20Å for a total of 37 discrete classes.
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Figure 4. Features of trRosetta
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2.2 Structure-based representation

Here, our focus is on the  distance probability distribution, or distogram, of 
the mutant sequence and wild type sequence. As distances are discretized into 
discrete bins, the argument max of the distogram is taken to obtain the bins with 
the maximum predicted probability. Protein distograms are symmetric and usually 
sparse. In order to reduce the sparsity of the final feature vector, the distograms 
are filtered to the pixels in which the wild-type distogram is non zero, i.e., the 
amino acid pair is closer than 20Å. 

Cβ − Cβ

Figure 5. Generation of structure-based representation

3. Experimental Results
The proposed method is trained and tested on the dataset proposed Sarkisyan et 
al [3] which is comprised of 54045 sequences of avGFP mutants paired with their 
fluorescence value. The dataset was randomly split into train (90%) and test 
(10%). Smaller splits were also sampled from the train set for experiments. Five 
protein representations, two structure-based and three sequence-based, were 
used for comparison: focused distogram, full distogram, one-hot encoding, 
UniRep [4], and UniRep64 [4]. 

Representation No. Features
Train data size

Full 10000 500

Focused distogram 1443 0.4722 0.5488 0.8049

Full distogram 56169 0.4556 0.5295 1.0022

One-hot 4740 1.1171 1.1172 1.1190

UniRep [4] 1900 1.32‡ 0.6858† 0.8673† 

UniRep64 [4] 64 1.0826 1.0889 1.1267

Table 1. Comparison of mean squared error between representations. All representations are 
tested on same test set except †,‡. For †, 5-fold cross-validation results are shown due to long 
inference time of UniRep. For ‡, regression method is linear regression and we compared with 
the result from which used the same dataset but with a different split.

Regression 
Methods

Train data size
Full 10000 500

LightGBM 0.3017 0.3511 0.6467

Ridge 0.4722 0.5488 0.8049

ElasticNet 1.1171 1.1171 1.1172

Table 2. Comparison of mean squared 
error between different regression 
methods. All representations are tested 
on same test set. 
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Predicted fluorescence Predicted fluorescence
Figure 6. Fluorescence prediction of LightGBM trained 
on full train set of focused distogram representation. 
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Existing works on protein representation learning mostly focused on sequence-
based methods. However, our comparison between representations shows that 
the structure of the protein encodes more valuable information than the 
embeddings extracted from the amino acid sequence. This result is quite 
reasonable since the structure has explicit relation with function. Also, the 
sequence-based methods are trained on whole protein database, without the 
information about the target function. So the representation may not include the 
property of the protein which is crucial when predicting certain functionality. It was 
also interesting to observe that the proposed representation is able to achieve 
accurate results even with a dataset with only 500 samples. Because collecting 
large amounts of functionality data experimentally is expensive, the ability to 
predict functionality successfully with limited data will be critical in guiding protein 
engineering and protein design in the years ahead. 

4. Discussion

5. References
[1] Ormö et al. "Crystal structure of the Aequorea victoria green fluorescent protein." Science 273.5280 (1996): 1392-1395.  
[2] Yang, Jianyi, et al. "Improved protein structure prediction using predicted interresidue orientations." Proceedings of the 
National Academy of Sciences 117.3 (2020): 1496-1503. 
[3] Sarkisyan et al. "Local fitness landscape of the green fluorescent protein." Nature 533.7603 (2016): 397-401. 
[4] Alley, Ethan C., et al. "Unified rational protein engineering with sequence-based deep representation learning." Nature 
methods 16.12 (2019): 1315-1322.

Figure 1. Protein engineering is critical for human life

based protein engineering. DynaPPO [2] achieved state-of-
the-art performance in several proteins and DNA engineer-
ing benchmarks using their novel variant of proximal policy
optimization [16], but is only applicable to short (less than
50 amino acids) sequences since it defines the problem as
generating one amino acid at each time step until the end
of the sequence. Knowing that the sequence length of a
single-chain antibody chain is around 110 [8] and proteins
usually contain hundreds of amino acids, it is hard to apply
DynaPPO to real-world protein engineering tasks.

In this paper, we propose, to the best of our knowledge,
the first reward-conditioned reinforcement learning-based
protein engineering framework that defines the action at one
time step as a mutation, i.e. substituting one amino acid, in
the protein sequence, thus applicable to most of the exist-
ing protein and antibody engineering tasks. Also, we show
that a structure-based protein representation, obtained us-
ing deep learning-based structure prediction networks, is
competitive with existing sequence-based representations
for protein functionality prediction and can accurately guide
protein engineering. Furthermore, we will explore the pos-
sibility of training a single shared protein designer agent
that can be applied to multiple protein engineering tasks.

2. Related Works

2.1. Protein structure prediction

Recently, breakthrough results were obtained using deep
neural network architectures for the protein structure pre-
diction problem. The trRosetta network proposed in [18]
considers structure prediction as a classification problem of

github.com/protein-dscig/design


Figure 2. Overview of the proposed protein engineering framework.

four features: Cβ − Cβ distance between two amino acids,
i.e. Cβ − Cβ distance, the rotation along the virtual axis
connecting the Cβ atoms of two amino acids, i.e., ω di-
hedral, and two angles specifying the direction of the Cβ

atom of one amino acid in a reference frame centered on
another amino acid. As another view on this problem, Al-
phaFold [9] views structure prediction as a graph inference
problem. The evolutionary representation of the protein is
processed through a graph attention module named Evo-
former that is repeated along the architecture, resulting in
the final predicted features, such as pairwise distance repre-
sentations, that guide the prediction of the final structure by
a structure module.

2.2. Protein representation learning

Since proteins have evolutionary related sequences, pre-
vious studies investigated the protein space by attempt-
ing to decipher their language: the amino acid sequence.
Sequence-based methods [1, 4, 13, 19] typically train a fea-
ture extractor to generate continuous, fixed-size embed-
dings from the discrete, variable-size amino acid sequence,
where the feature extractor usually consists of complex and
state-of-the-art natural language processing models such as
transformers. Recently, Yang et al. [13], proposed a net-
work architecture composed of a series of dilated convolu-
tions and 1-dimension convolutions based on ByteNet [10]
that can compete with transformers [17] while being com-
putationally more efficient.

2.3. Protein functionality prediction

Proteins can have different types of representations.
These representations are used as input features to train ma-
chine learning algorithms that aim to predict important pro-
tein functions. Even though sequence-based methods can
extract important features of the protein space, they do not
take the protein structure into account. There have been
recent studies that investigates the capacities of large pro-
tein language models to convey structure properties [13,19]

but, explicitly, structures are not taken into consideration
during the training process. The protein structure in 3-
dimensional space of its sequence of amino acids is closely
related to its function. Recently, the high accuracy obtained
by structure prediction networks, such as AlphaFold [9]
and RosettaFold [18], opened the possibility of using these
methods as tools for different applications, including the in-
vestigation of structure-based representations for predicting
functionalities important for protein engineering tasks.

2.4. Protein engineering

Protein engineering is accomplished by introducing a se-
ries of mutations from a wild-type amino acid sequence,
i.e., the protein to be optimized. The engineering process
is guided by an objective function that predicts the desired
function of the protein. Biswas et al. [4] introduced a pro-
tein engineering framework that used a sequence-based rep-
resentation model called eUniRep to guide evolution via
a greedy algorithm that is modified to allow exploration.
Angermueller et al. [2] introduced a model-based reinforce-
ment learning policy optimization method to engineer pro-
tein sequences.

3. Methodology
In this section, we present the details of our proposed

RL-based protein engineering framework (Fig. 2). The
framework consists of a policy which predicts the position
to mutate and an environment that predicts the functionality
of the mutated sequence, that is then is used as the reward
to guide the optimization process.

3.1. Markov decision process

Let x ∈ AL be an amino acid sequence of length L over
the set of amino acids A. We formulate the protein engi-
neering problem of a sequence x as a Markov decision pro-
cess M = (S,A, p, r) were S is the state space, A is the
action space, p is the state transition function, and r is a re-
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1. Introduction

Proteins are complex molecules responsible for different functions in the human 
body. Proteins are also an important part of products in the food, pharmaceutical, 
and chemical industries. Protein engineering, or improving a protein's function 
and properties, is critical for its effective usage in various applications. Protein 
engineering is accomplished by introducing a series of mutations from a wild-type 
amino acid sequence, i.e., the protein to be optimized. However, because the 
sequence space for a target function is usually sparse, assessing the quality of 
mutations is not trivial. Because the functionality to be optimized is directly guided 
by protein engineering, it is critical to accurately predict the change in functionality 
from experimental data. 
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Figure 3. Overview of the functionality prediction methods. 

Previous studies investigated the protein space by attempting to decipher their 
language: the amino acid sequence. These methods focus on obtaining a good 
representation of sequence using natural language processing models. However, 
they do not take the protein structure into account. The protein structure in 3-
dimensional space is closely related to its function. For example, the fold of 
avGFP is 11-stranded beta-barrels wrapped around a chromophore which emits 
fluorescence. The beta-barrels form a cylinder around the chromophore, which is 
thought to be responsible for the high yield of fluorescence and stability [1]. 

Recently, breakthrough results [2] were obtained via deep neural network for the 
protein structure prediction. Therefore we investigate the use of a structure-based 
representation for the prediction of green fluorescence in a protein. The structure 
of a mutant is obtained using a deep learning-based structure prediction network, 
and a feature vector representation is proposed by comparing the mutant 
structure to the wild-type structure. This feature vector is then used to train an 
explainable machine learning (ML) regressor for the green fluorescent functionality 
prediction. The proposed structure-based representation improves the regression 
accuracy when compared to the one-hot and sequence-based representation.

2. Methodology
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2.1 trRosetta structure prediction network

trRosetta [2] considers structure prediction as a classification problem of four 
features: distance between amino acids, i.e.,  distance,  dihedral, i.e., 
rotation along the virtual axis connecting the  atoms of two amino acids, and 
two angles specifying the direction of the  atom of one amino acid in a reference 
frame centered on another amino acid (Fig. 4). The  distance is discretized 
from a range of 2Å to 20Å with each bin size set to 0.5Å, also including one 
additional bin when the distance exceeds 20Å for a total of 37 discrete classes.
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2.2 Structure-based representation

Here, our focus is on the  distance probability distribution, or distogram, of 
the mutant sequence and wild type sequence. As distances are discretized into 
discrete bins, the argument max of the distogram is taken to obtain the bins with 
the maximum predicted probability. Protein distograms are symmetric and usually 
sparse. In order to reduce the sparsity of the final feature vector, the distograms 
are filtered to the pixels in which the wild-type distogram is non zero, i.e., the 
amino acid pair is closer than 20Å. 

Cβ − Cβ

Figure 5. Generation of structure-based representation

3. Experimental Results
The proposed method is trained and tested on the dataset proposed Sarkisyan et 
al [3] which is comprised of 54045 sequences of avGFP mutants paired with their 
fluorescence value. The dataset was randomly split into train (90%) and test 
(10%). Smaller splits were also sampled from the train set for experiments. Five 
protein representations, two structure-based and three sequence-based, were 
used for comparison: focused distogram, full distogram, one-hot encoding, 
UniRep [4], and UniRep64 [4]. 

Representation No. Features
Train data size

Full 10000 500

Focused distogram 1443 0.4722 0.5488 0.8049

Full distogram 56169 0.4556 0.5295 1.0022

One-hot 4740 1.1171 1.1172 1.1190

UniRep [4] 1900 1.32‡ 0.6858† 0.8673† 

UniRep64 [4] 64 1.0826 1.0889 1.1267

Table 1. Comparison of mean squared error between representations. All representations are 
tested on same test set except †,‡. For †, 5-fold cross-validation results are shown due to long 
inference time of UniRep. For ‡, regression method is linear regression and we compared with 
the result from which used the same dataset but with a different split.

Regression 
Methods

Train data size
Full 10000 500

LightGBM 0.3017 0.3511 0.6467

Ridge 0.4722 0.5488 0.8049

ElasticNet 1.1171 1.1171 1.1172

Table 2. Comparison of mean squared 
error between different regression 
methods. All representations are tested 
on same test set. 
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Predicted fluorescence Predicted fluorescence
Figure 6. Fluorescence prediction of LightGBM trained 
on full train set of focused distogram representation. 
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Existing works on protein representation learning mostly focused on sequence-
based methods. However, our comparison between representations shows that 
the structure of the protein encodes more valuable information than the 
embeddings extracted from the amino acid sequence. This result is quite 
reasonable since the structure has explicit relation with function. Also, the 
sequence-based methods are trained on whole protein database, without the 
information about the target function. So the representation may not include the 
property of the protein which is crucial when predicting certain functionality. It was 
also interesting to observe that the proposed representation is able to achieve 
accurate results even with a dataset with only 500 samples. Because collecting 
large amounts of functionality data experimentally is expensive, the ability to 
predict functionality successfully with limited data will be critical in guiding protein 
engineering and protein design in the years ahead. 

4. Discussion
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Figure 3. Procedure to obtain focused distogram of a protein.

ward function. The state space S is the set of all possible
sequences of length L, i.e. all the possible proteins with
length L. The state st at time t is defined as the current
sequence x. The action space A corresponds to the set of
positions P = {1, · · · , L} that can be mutated. The action
at is defined as choosing one of the positions of st. The
state transition function p(st+1|st) is deterministic and cor-
responds to mutating amino acid of st at position at to the
output of a protein language model, modeled by a neural
network, defined as mst(i) = q. mst(i) is the output of the
language model of sequence st masked at position i and q
is the amino acid given as output by the language model.
The reward function r(st) = f(n(st)) where f is mapping
function from sequence to protein functionality modeled by
a neural network. In the reward function, n(x) is a structure
prediction network, such as AlphaFold, and the details of
this formulation will be detailed in Sec. 3.3.

3.2. Policy optimization

The policy network π take as an input the current state
st, i.e. current amino acid sequence. First, the current state
passes to a structure prediction network n(x) and its output
is the input to another neural network that predicts the posi-
tion to be mutated. We train a policy πθ(at|st) to optimize
the expected sum of rewards:

Êt =
∑
st

∑
at

πθ(at|st)r(st|at) (1)

We use proximal policy optimization [16] to optimize the
objective.

3.3. Surrogate reward function

The reward function, representing the protein function-
ality prediction, is modeled using a structure-based repre-
sentation of the current mutant sequence as its input. The
protein structure for a target amino acid sequence is pre-
dicted using a deep learning-based structure prediction net-
work. In this paper, we use trRosetta as the main structure
prediction network. Our protein representation is focused
on the distance probability distribution, or distogram, of the
mutant sequence when compared to the distance probability

distribution of the wild type sequence. As distances are dis-
cretized into discrete bins in trRosetta, the argument max
of the distogram is taken to obtain the bins with the max-
imum predicted probability. Protein distograms are sym-
metric and usually sparse. In order to reduce the sparsity
of the final feature vector, the distograms are filtered to the
pixels in which the wild-type distogram is non zero, i.e.,
the amino acid pair is closer than 20Å. The formalization
of this process is as follows. For a mutant distogram Mi,j

and wild-type distogram Wi,j where i, j ∈ {1, · · · , L},
the proposed set of normalized features F is defined as
F = {(Mi,j − 1)/36|Wi,j ̸= 0}. The normalization is
performed to transform the discrete bins representing dis-
tances from 2Å to 20Å to values from 0 to 1, and distances
larger than 20Å to a negative value. For the rest of this pa-
per, the feature vector is called focused distogram, and the
unfiltered feature vector is called full distogram. The proce-
dure to obtain focused distogram is illustrated in Fig. 3. The
distogram representation of protein structure is used to train
a machine learning algorithm or neural network to predict
the functionality as an output.

4. Experimental results
4.1. Surrogate reward function modeling

4.1.1 Experimental settings

We test the proposed framework to model our surrogate re-
ward function for predicting the fluorescence activity of the
green fluorescent protein of Aequorea victoria (avGFP). A
surrogate reward function model is trained on the dataset
proposed by Sarkisyan et al. [15] which is comprised of
54045 sequences of avGFP mutants paired with their flu-
orescence value. The dataset is randomly split into train
(90%) and test (10%). Smaller splits (10000 and 500 sam-
ples) are also sampled from the train set for experiments.
Distograms for the wild type and all mutants are collected
using trRosetta. Five protein representations, two structure-
based and three sequence-based, are used for compari-
son: focused distogram, full distogram, one-hot encoding,
UniRep [1], and UniRep64 [1]. UniRep and Unirep64 dif-
fer on the size of the final generated feature vector. Using
each representation as input, a ridge regressor is trained to
predict fluorescence as an ablation study to confirm the su-
perior performance of the structure-based representation for
protein functionality prediction.

4.1.2 Results

As shown in Tab. 1, the distogram representations achieved
the smallest mean-squared error (MSE) for all datasets
when compared to sequence-based methods. For the larger
train sets, the full distogram achieved the best MSE while
for the smallest train set, the focused distogram achieved the



Representation No. features Train data size

Full 10000 500

Focused distogram 1443 0.4722 0.5488 0.8049
Full distogram 56169 0.4556 0.5295 1.0022

One-hot 4740 1.1171 1.1172 1.1190
UniRep [1] 1900 1.32‡ 0.6858† 0.8673†

UniRep64 [1] 64 1.0826 1.0889 1.1267

Table 1. Comparison of mean squared error between representations. All representations are tested on same test set except †,‡. For †, 5-fold
cross-validation results are shown due to long inference time of UniRep. For ‡, regression method is linear regression and we compared
with the result from [12] which used the same dataset but with a different split. Best results on each dataset are highlighted.

Regression methods Data size

Full 10000 500

LightGBM [11] 0.3017 0.3511 0.6467
Ridge [7] 0.4722 0.5488 0.8049

ElasticNet [20] 1.1171 1.1171 1.1173

Table 2. Comparison of mean squared error between different re-
gression methods. All representations are tested on same test set.

best MSE. It is important to observe that the focused dis-
togram showed competitive results when compared to the
full distogram with only 2.6% of the number of features.
By filtering amino acid pairs that interact in the wild-type
protein, the surrogate reward network was able to focus on
important interactions. This observation is also important to
decide structure-based representation alternatives to a dis-
togram when modeling a functionality predictor. Next, as
detailed in Tab. 2 and visually shown in Fig. 4, the best re-
sults were obtained by using a LightGBM regressor. Light-
GBM achieved the smallest MSE for all dataset splits. The
best value of approximately 0.30 is better when compared
to other sequence-based benchmark results [12].

4.2. Reward-conditioned RL-based protein engi-
neering framework

4.2.1 Experimental settings

The state, action, and reward will follow the modeling de-
fined in Sec. 3.1 and Sec. 3.3. The environment starts an
episode defining an initial sequence for optimize, e.g., wild
type or a random sequence. The episode is finished after
N steps of optimization. At each time step, the agent re-
ceive a sequence to optimize and returns a position in the
sequence that should be mutated. The environment then
chooses the amino acid to mutate using a pre-trained pro-
tein language model. The policy of amino acid selection is
non-deterministic. The exploration is stochastic following
the distribution of amino acids to ensure that enough ex-
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1. Introduction

Proteins are complex molecules responsible for different functions in the human 
body. Proteins are also an important part of products in the food, pharmaceutical, 
and chemical industries. Protein engineering, or improving a protein's function 
and properties, is critical for its effective usage in various applications. Protein 
engineering is accomplished by introducing a series of mutations from a wild-type 
amino acid sequence, i.e., the protein to be optimized. However, because the 
sequence space for a target function is usually sparse, assessing the quality of 
mutations is not trivial. Because the functionality to be optimized is directly guided 
by protein engineering, it is critical to accurately predict the change in functionality 
from experimental data. 
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Figure 3. Overview of the functionality prediction methods. 

Previous studies investigated the protein space by attempting to decipher their 
language: the amino acid sequence. These methods focus on obtaining a good 
representation of sequence using natural language processing models. However, 
they do not take the protein structure into account. The protein structure in 3-
dimensional space is closely related to its function. For example, the fold of 
avGFP is 11-stranded beta-barrels wrapped around a chromophore which emits 
fluorescence. The beta-barrels form a cylinder around the chromophore, which is 
thought to be responsible for the high yield of fluorescence and stability [1]. 

Recently, breakthrough results [2] were obtained via deep neural network for the 
protein structure prediction. Therefore we investigate the use of a structure-based 
representation for the prediction of green fluorescence in a protein. The structure 
of a mutant is obtained using a deep learning-based structure prediction network, 
and a feature vector representation is proposed by comparing the mutant 
structure to the wild-type structure. This feature vector is then used to train an 
explainable machine learning (ML) regressor for the green fluorescent functionality 
prediction. The proposed structure-based representation improves the regression 
accuracy when compared to the one-hot and sequence-based representation.

2. Methodology
Cβ − Cβ distance
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2.1 trRosetta structure prediction network

trRosetta [2] considers structure prediction as a classification problem of four 
features: distance between amino acids, i.e.,  distance,  dihedral, i.e., 
rotation along the virtual axis connecting the  atoms of two amino acids, and 
two angles specifying the direction of the  atom of one amino acid in a reference 
frame centered on another amino acid (Fig. 4). The  distance is discretized 
from a range of 2Å to 20Å with each bin size set to 0.5Å, also including one 
additional bin when the distance exceeds 20Å for a total of 37 discrete classes.
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Figure 4. Features of trRosetta
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2.2 Structure-based representation

Here, our focus is on the  distance probability distribution, or distogram, of 
the mutant sequence and wild type sequence. As distances are discretized into 
discrete bins, the argument max of the distogram is taken to obtain the bins with 
the maximum predicted probability. Protein distograms are symmetric and usually 
sparse. In order to reduce the sparsity of the final feature vector, the distograms 
are filtered to the pixels in which the wild-type distogram is non zero, i.e., the 
amino acid pair is closer than 20Å. 

Cβ − Cβ

Figure 5. Generation of structure-based representation

3. Experimental Results
The proposed method is trained and tested on the dataset proposed Sarkisyan et 
al [3] which is comprised of 54045 sequences of avGFP mutants paired with their 
fluorescence value. The dataset was randomly split into train (90%) and test 
(10%). Smaller splits were also sampled from the train set for experiments. Five 
protein representations, two structure-based and three sequence-based, were 
used for comparison: focused distogram, full distogram, one-hot encoding, 
UniRep [4], and UniRep64 [4]. 

Representation No. Features
Train data size

Full 10000 500

Focused distogram 1443 0.4722 0.5488 0.8049

Full distogram 56169 0.4556 0.5295 1.0022

One-hot 4740 1.1171 1.1172 1.1190

UniRep [4] 1900 1.32‡ 0.6858† 0.8673† 

UniRep64 [4] 64 1.0826 1.0889 1.1267

Table 1. Comparison of mean squared error between representations. All representations are 
tested on same test set except †,‡. For †, 5-fold cross-validation results are shown due to long 
inference time of UniRep. For ‡, regression method is linear regression and we compared with 
the result from which used the same dataset but with a different split.

Regression 
Methods

Train data size
Full 10000 500

LightGBM 0.3017 0.3511 0.6467

Ridge 0.4722 0.5488 0.8049

ElasticNet 1.1171 1.1171 1.1172

Table 2. Comparison of mean squared 
error between different regression 
methods. All representations are tested 
on same test set. 
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Figure 6. Fluorescence prediction of LightGBM trained 
on full train set of focused distogram representation. 
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Existing works on protein representation learning mostly focused on sequence-
based methods. However, our comparison between representations shows that 
the structure of the protein encodes more valuable information than the 
embeddings extracted from the amino acid sequence. This result is quite 
reasonable since the structure has explicit relation with function. Also, the 
sequence-based methods are trained on whole protein database, without the 
information about the target function. So the representation may not include the 
property of the protein which is crucial when predicting certain functionality. It was 
also interesting to observe that the proposed representation is able to achieve 
accurate results even with a dataset with only 500 samples. Because collecting 
large amounts of functionality data experimentally is expensive, the ability to 
predict functionality successfully with limited data will be critical in guiding protein 
engineering and protein design in the years ahead. 

4. Discussion
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Figure 4. Fluorescence prediction on train and test set. LightGBM
is trained on full train set of focused distogram representation.

ploration in the state space is performed. The sequence is
evaluated at each time step to return a reward to the policy.

4.2.2 Preliminary Results

As preliminary experiments for the ability of the surrogate
reward function trained in Sec. 3.3, we experiment the mod-
eling of fluorescent proteins using hallucination as imple-
mented in [3]. Our surrogate reward function is combined
via addition with the output of a background network that
represents how different the current sequence is from an
average protein. This combined optimization objective is
used to guide protein engineering. We test the engineer-
ing starting from two option: from a random sequence, and
from the wild type protein (PDB:1EMA). The optimization
also follows two options: using an MCMC algorithm in
which exploration is enabled, and using greedy optimiza-
tion only accepting mutations that lower the objective func-
tion. Some of the examples obtained during these prelimi-
nary examples are shown in Fig. 5. It can be observed that
starting from a random sequence, the mutations lead to un-
stable proteins even parts that resemble the wild type are
observed. For the designs that uses greedy optimization, 46
mutations were accepted during the optimization process of
40K steps. These results also highlight that, while creating



Figure 5. Protein engineered through guided evolution using sur-
rogate reward network using Hallucination [3]. Starting from a
random sequence with MCMC optimization (a); starting from a
random sequence with greedy optimization (b); starting from the
wild type with greedy optimization (c).

a protein engineering framework, it is important to take into
consideration the characteristics of the protein function be-
ing optimized. The chromophore part of the wild type is
usually regarded as being responsible for the fluorescence
activity [15], so it is important that during the engineering
process this part of the protein is kept active while the pol-
icy focus on developing and optimizing parts of the protein
that do not affect the functionality being optimized.

5. Discussion
Existing works on protein representation learning [1, 4,

13, 19] mostly focused on sequence-based methods. How-
ever, our comparison between representations shows that
the structure of the protein encodes more valuable infor-
mation than the embeddings extracted from the amino acid
sequence. This result is quite reasonable since the struc-
ture has explicit relation with function, where amino acid
sequence does not. Also, the sequence-based methods are
trained on whole protein database, without the information
about the target function. So the representation may not
include the property of the protein which is crucial when
predicting certain functionality. This is also the reason
why sequence-based method show increased accuracy when
fine-tuned to specific target proteins [4]. Also, the proposed
representation is able to achieve accurate results even with
a train dataset with only 500 samples. Because collecting
large amounts of functionality data experimentally is expen-
sive, the ability to predict functionality successfully with
limited data will be critical in guiding protein engineering
and protein design in the years ahead.

5.1. Interpretability of functionality prediction

The ability of LightGBM to recognize the importance
of each feature for the final prediction is valuable. As in
the proposed representation each feature corresponds to an
interaction between a pair of amino acids, we can qualita-
tively analyze the importance given by the regressor to each
feature. For that, we extracted and plotted (Fig. 6) the im-
portance of interactions given by the LightGBM regressor

Figure 6. (a) Feature importance of LightGBM regressor. Note
that only half of the distogram is used due to its symmetry. (b)
Visualization in PyMol [6] in the wild-type (PDB:1EMA). Top 6
interactions are colored from red, most important, to purple, least
important.

with best result. It’s worth noting that the chromophore area
(purple) is one of the six most crucial features for a predic-
tion, which corresponds to the analysis from [15]. The find-
ings suggest that these methods could be useful for iden-
tifying critical amino acid interactions that are involved in
specific protein functions.

6. Future work

6.1. Protein functionality prediction

We observed that structure-based representation is as
powerful as sequence-based representation for predicting
the protein functionality. Therefore, we will adapt a self-
attention module for protein representation learning and
find an efficient way to get the structure-based representa-
tion. Then we will test our architecture in avGFP fluores-
cence dataset [15] and TAPE benchmark [14]. Furthermore,
we plan to test our architecture to predict, affinity, speci-
ficity and developability of antibodies.

6.2. Protein engineering framework

We plan to implement the protein engineering frame-
work as in Fig. 2 using an OpenAI Gym environment frame-
work and, at first, using the CARP algorithm [19] with a
pre-trained model as its language model given its computa-
tion efficiency for inference. To model the agent, we plan to
test two RL algorithms, one on-policy, PPO [16], and one
using a offline framework, Decision Transformers [5], to
evaluate the proposed framework in different settings. The
implemented protein engineering framework is going to es-
pecially be tested to avGFP engineering due to the size of
the dataset available for training our functionality predic-
tion network. In addition, in parallel we plan to curate an-
tibody datasets to apply our framework to various antigen-
conditioned antibody design problems.
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