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Chapter 1

Introduction

1.1 Background

The adaptive immune system of vertebrates is capable of mounting robust responses
to a broad range of potential pathogens. Critical to this flexibility are antibodies, which
are specialized to recognize a diverse set of molecular patterns with high affinity and
specificity. The overall role of an antibody is to bind to an antigen, e.g., a virus, present
it to the immune system, and stimulate an immune response. This natural role in the
defense against pathogens, e.g. SARS-COV-2, Influenza, makes antibodies an increasingly
popular choice for the development of new therapeutics.

An antibody consists of a heavy chain and a light chain, each composed of a variable
domain (VH/VL) and a constant domain, as shown in Fig. 1.1. The variable domain is
further divided into a framework region and three complementarity-determining regions
(CDRs). The three CDRs on the heavy chain are denoted as CDR-H1, CDR-H2, CDR-
H3, each occupying a contiguous subsequence in the framework region sequence. As the
most variable part of an antibody, CDRs are the main determinants of binding and neu-
tralization. Following current state-of-art approaches in computational biology [4-9], we
formulate antibody design as a CDR generation problem, conditioned on the framework
region (Fab) sequence.

Currently, monoclonal antibodies make up a rapidly growing segment of the global
pharmaceutical market. The global therapeutic monoclonal antibody market was valued

at approximately $150 billion in 2019 and is expected to generate revenue of $300 billion by
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Figure 1.1: Structures of an antibody and of common antibody fragments. An antibody
structure is shown on the left with the heavy (H) and light (L) chains in blue and green,
respectively. CDRs containing the paratopes are coloured in red, and the heavy and light
variable domains (VH and VL) are labelled. The antigen-binding fragment (Fab) region
is responsible for recognising the target, while the crystallisable fragment (Fc) region for
immune function and lysosome escape. The three CDR loops are highlighted in red on VH
domain.

the end of 2025 [13]. However, rational design of antibody-antigen interactions is hindered
by reliance on experimental methods such as crystallography, NMR, and cryo-EM, which
are low throughput and requires significant investments of time and resources that may
fail (Fig. 1.2).

In general, the needs for effective research or traditional diagnostics of antibodies
may require in vitro selection from large, well-designed antibody libraries conducted on
animal-derived experiments [5]. However, since each of different in vitro display systems,
computational antibody libraries, and animals-based experiments perform differently, it
makes almost impossible to predict in advance which platform will be most successful
for any particular therapeutic target. Consequently, many drug discovery programs today
use parallel approaches based on computational tools and machine learning to generate
antibody therapeutics, increasing the chances leads will be found and reducing the time
required [14]. Therefore, it is expected that research on novel computational methods are

going to be crucial for the development of safer and cost-efficient therapeutic antibodies

in the near future.
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Figure 1.2: Rational design of antibody-antigen interactions

1.2 Traditional Methods

In general, methods for computational antibody design roughly fall into two categories.
The first class is based on energy function optimization, which uses Markov Chain Monte
Carlo simulation to iteratively modify an antibody sequence and its structure to reach a
local minimum energy for the antibody structure and the interface between antibody and
antigen (Fig. 1.3). Similar approaches are also used in protein design [3, 4]. However, these
physics-based methods are computationally expensive, in which the designed sequence can
fold into a structure different from the designed structure, and our antigen-conditioned
objective can be more complicated than evaluating only physics-based binding energy

models [5, 9].
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Figure 1.3: Energy Optimization of Protein Sequences
1.3 Deep Learning-based Methods

The second methodology is based on generative models. For antibodies, they are mostly
sequence-based [15, 16], whereas regarding the proteins, authors from [17, 18, 19] further
developed models conditioned on a backbone structure or protein folding in general. Since
the best CDR structures are often unknown for new pathogens, most approaches co-
design sequences and structures for specific properties of targeted viruses, mimicking auto-
regressive models for graph generation.

In fact, the application of Natural Language Processing (NLP) algorithms, such as
Transformers [20], and Graph Neural Networks (GNN) have been proven to be efficient
for designing de-novo antibody sequences and structures [6, 7, 8, 9]. Particularly, due to
the limited antibody structures available in the structural antibody database [1, 2|, most
of the recent research studies have focused on antibody sequence generation for paired im-
munoglobulin sequences using Bidirectional Encoder Representations from Transformers
(BERT) models [7, 8, 12] and (self-)supervised learning algorithms [6, 9]. However, there
has been a lack of studies that have investigated both structure-based and sequence-level
representations to filter positive candidates from an antibody dataset which may possibly

bind and neutralize specific pathogenic viruses.



Chapter 2

Research Objectives

In this work, our aim is to use contrastive learning methods (Fig. 2.1) for learning
effective antibody representation (embeddings). In addition, we also intend to propose a
proper data augmentation for antibody sequences and their respective structural data.

Contrastive learning has recently achieved good results to classify images in computer
vision tasks [10, 11]. Using such self-supervised algorithms, the loss is designed to maximize
the difference between positive examples and negative examples. In our study, specifically,
positive examples could be regarded as antibodies that bind and neutralize to a specific
pathogenic virus, while negative examples would be antibodies which do not bind to the
specific antigen. We hypothesize that representation learned by contrastive learning using
structural-based and sequence-based data can help in the classification of possible binders

for specific antigens and learn good 3D/sequence representations for antigen-specificity

tasks.
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Figure 2.1: Supervised vs self-supervised contrastive losses. Supervised contrastive learn-
ing considers different samples from the same class as positive examples, in addition to
augmented versions
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Figure 2.2: Cross entropy, self-supervised contrastive loss and supervised contrastive loss:
The cross entropy loss (left) uses labels and a softmax loss to train a classifier; the self-
supervised contrastive loss (middle) uses a contrastive loss and data augmentations to
learn representations. The supervised contrastive loss (right) also learns representations
using a contrastive loss, but uses label information to sample positives in addition to
augmentations of the same image. Both contrastive methods can have an optional second
stage which trains a model on top of the learned representations.

Our main objectives during this work can be summarized as follows:

Generate a synthetic antibody structure dataset by using State-Of-The-Art (SOTA)

deep learning-based antibody structure prediction networks.

Train a classifier via contrastive learning to identify if an antibody is a potential
binder to a target antigen by using sequence-based and structure-based representa-

tions (similar to Fig 2.2).

Propose a novel data augmentation mechanism for antibody data to produce addi-
tional synthetic sequences/structures for learning better representations using con-

trastive learning algorithms.

Generate novel antigen-specific antibody candidates with traditional computational
methods such as Rosetta Antibody Design (RAbD) [3] and deep learning-based
generative methods. Evaluate the candidates in silico using the contrastive learning-
based classifier, and select the best ones for real wet-lab experiments to compute

binding affinity, solubility and developability parameters.



Chapter 3

Methodology

One of the important aspects of therapeutic antibody design is to collect antigen-
specific data that could be processed and filtered for efficient learning representations. As
we aim to train a (self-)supervised contrastive classifier using both sequence and structure,
the first step is to gather those sequence and structure data for antibodies that are con-
firmed to neutralize target antigens. In the next subsection, we detail how we are collecting
the antibody sequences and structures to create a dataset and how we are inferring syn-
thetic structures for antibodies that only contain sequence data using deep learning-based

antibody structure prediction networks.

3.1 Datasets

3.1.1 Structural Antibody Database (SAbDab)

Structural antibody database [2] is an online resource containing all the publicly avail-
able antibody structures annotated and presented in a consistent fashion. The data are
annotated with several properties including experimental information, gene details, correct
heavy and light chain pairings, antigen details and, if available, antibody-antigen binding
affinity. As in Fig. 3.1, the user can retrieve the full set of structures, specific entries by
specifying their Protein Data Bank (PDB) code or to create subsets based on search crite-
ria [1]. Structures can be searched based on the experimental methods used to determine
the structure, species of the antibody, type of the antigen, presence of affinity values in the

annotation and presence of amino acid residues at specific sequence positions.
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Figure 3.1: SAbDab’s workflow. New structures from the PDB are weekly analyzed to
find antibody chains. These structures are then annotated with a number of properties
and stored in SAbDab. Users may access and select this data using a number of different
criteria. Structures and annotations can be downloaded individually or as a dataset.

3.1.2 Observed Antibody Space (OAS)

The Observed Antibody Space (OAS) database was created in 2018 to offer clean,
annotated, and translated repertoire data. Driven by increasing volume of data and the
appearance of paired (VH/VL) sequence data during last 4 years, OAS became accessi-
ble via a web-server [1], with standardized search parameters and sequence-based search
option, to provide 1.5 billion unpaired sequences from 80 studies, including recent stud-
ies featuring SARS-CoV-2 data, and 172,723 paired sequencing data from five studies.
Providing the nucleotides for the VH/VL chains, the database also contains additional
sequence annotations, such as the antibodies junction sequence and whether it is a pro-
ductive sequence during wet-lab experiments, allowing for a fast initial query of 1,000

antibody sequences similar to a given sequence of interest.
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Figure 3.2: Downloading from OAS. (a) The sequence search tab for unpaired sequences,
with the search options filled for heavy chain sequences from SARS-CoV-2 infected patients

(shown with red arrows). (b) The search result, with each data unit matching the search
and a downloadable link containing the links for the relevant data units (with a red arrow)



3.1.3 Antigen-specific repertoire

VH_nuc | Vi_nuc | Genbank|L Genbank{Resources| VH_AA | VL AA bavy V_gedeavy J_gerkavy D_gerfight V_genlight J_gen|CDRL1_AA|CDRL2_AA|CDRL3_AA|CDRH1_AA|CDRH2_AA|CDRH3_AARH1 kabat RH2_kabat [RL1 kabat [RL2 kabat | cluster
0 |HMcONI HA GAGGTGCAGCTGGTGG. LC388818.1 Adachi Y et EVQLVESGGGLVQPGGS IGHV3-23"1GHI4*02_ IGHD3-10%01 GFTFSAYA  ISGNGUNT AKDWAWEAYALT  AISGNGVNTYYIDSVKG
1 |HMcoN2 HA CAGGTGCAGCTGGTGC/ LC388819.1 Adachi Yet QVOLVASGAEVKKPGSS IGHV1-69* IGHI6*02  IGHD6-19%01 GGVFSTWV IIPMIGIS  TRRDKSEA\TYIS  RIIPMIGISHYEQRFQG
2 |HMCON3 HA GAGGTGCAGCTGGTGG, LC388820.1 Adachi Y et EVOLVESGGGLVQPGGS IGHV3-23*1GHI4*02  IGHD3-10%01 GFTFSAYA IGGSGLST AKDWSWD AYAMI  AIGGSGLSTYVIDSVKG
3 |HMCONa HA CAGGTGCAGCTGGTGC/ LC388821.1 Adachi Y et QUOLVOSGAEVKKPGSS IGHV1-69*IGHI6*02  IGHD6-19%01 GGTFSSYT IIPILEIA  ARRDLSEAVSYTIT  RIIPILEIANYAQRFQG
4 |HMcONS HA GAGGTGCAGCTGGTGG. LC388822.1 Adachi Y et EVQLVESGGGLVQPGRS IGHV3-49* IGHI5*02  IGHD2-2°02 GFSFGDHA IRGKAYDET TKEIRGAHI DHAMG  LIRGKAYDETTEYAASVKG
5 |HMCONG HA GAGGTGCAGCTGGTGG. LC388823.1 Adachi Y et EVOLVESGGGLVQPGGS IGHV3-23*1GHI4*02  IGHD1-26%01 GFTFSAYA IGGSGGST AKDRSWDLAYAMS  GIGGSGGSTYYADSVKG
6 __|HMCONT HA GAGGTGCAGCTGGTGG, LC388824.1 Adachi Y et EVOLVESGGGLVQPGGS IGHV3-23*1GHI5*02  IGHD2-15%01,IGHD2-2101,1GHD2-21702 GFTFRSYA ISGSGETT AKSGWSRGSYAMS  TISGSGETTFYADSVKG
7 |HMcoNs HA CAGGTGCAGCTGCAGG: LC388825.1 Adachi Y et QVQLQESGPGLVKPSETL IGHV4-470'IGHI5*02  IGHD3-22%01 GGSINSYY IYTSGTT  ARENLYFYNSYYWN  RIYTSGTTNYNPSLKS
8 |HMCONY HA CAGGTGCAGCTGGTGC/ LC388826.1 Adachi Y et QUOLVQSGAEVKKPGAS IGHV1-2%0; IGHI3*01,1 IGHD3-3°01,IGHD3-3402,IGHD3/OR15-32%01 GYIFNNYY LNPDSGDT ARGESFSLS NYYLH  WLNPDSGDTNYPQKFQA
9 |HMCON1O HA CAGGTGCAGCTGGTGC/ LC388827.1 Adachi Y et QUOLVQSGAEVKMPGAS IGHV1-46* IGHI4*02  IGHD2-8°01 GYTFTSSH INPRSGTT TRMTGCTN SSHMH  MINPRSGTTNYPQKFQG
10 |HMCON11 HA CAGCTGCAGCTGCAGG/ LC388828.1 Adachi Yet QLQLQESGPGLVKLSETL IGHV4-39*11GHI3*02  IGHD1-2601,IGHDS-12*01,IGHDS/OR15-5201 GGPITRSSY IYYSGNT  ARYSDFLGF RSSYYWG  SIYYSGNTYYNPSLKS.

11 |HMCONI2 HA CAGGTGCAGCTGGTGC/ LC388829.1 Adachi Yet QUOLVOSGAEVKKPGAS IGHV1-2%0; IGHI3 *01, IGHD3-3°01,IGHD3-3%02,IGHD3/0R15-32%01 GYIFNNYY INPDSGDP ARGESFSRTNYYLH  WINPDSGDPNYPQTFQA
12 |HMCON13 HA GAGGTGCAGCTGGTGG. LC388830.1 Adachi Yet EVOLVESGGGLVQPGGS IGHV3-23* 1GHI4*02 IGHD2-2°01,IGHD2-2+02,1GHD2-2%03 GFTFSISA IGGSGGRT AKCSSADCFISALS  GIGGSGGRTYYTDSVKG
13 |HMLAHL HA CAGGTGCAGCTACAGCY LC388831.1 Adachi Y et QVOLQQWGAGLLKPSE IGHV4-34*1GHI4*02  IGHD5-18%01,IGHDS5-5*01 GGSFSYSY VNHSGST ARSSRYSYA YSYWT  EVNHSGSTNYNPSLKS
14 |HMLAH2 HA CAGGTGCAGCTGGTGC/ LC388832.1 Adachi Y et QVQLVOSGPEVKKPGAS IGHV1-8*0 IGHI5*02 IGHD3-10%01 GYTFSTYD  MIPSSGKT ARGSRPRN.TYDIN  WMIPSSGKTGLAQKFQS
15 |HMLAH3  HA CAGGTGCAGCTGGTGC/ LC388833.1 Adachi Yet QUOLVOSGAEVKSPGAS'IGHV1-8¥0 IGHIS*02  IGHD3-10%01 GYTFSTYD MIPSSGKT ARGSRPRN.TYDIN  WMIPSSGKTGFAQKFQG
16 |HMLAH4 HA GAGGTGCAGCTGTTGG/ LC388834.1 Adachi Yet EVOLLESGGGLVHPGGS IGHV3-23* 1GHI4*02  IGHD3-10%01,IGHD3-10°02 GFTFSNFD ISGRGDNT AKNSRWDLNFDMT  TISGRGDNTYYADSVKG
17 |HMLAHS  HA GAGGTGCAGCTGTTGG/ LC388835.1 Adachi Yet EVOLLESGGGLVAPGGS IGHV3-23*1GHI4*02  IGHD2-15%01 GFTFSRNA ISANGGTT VGSRLGTFLRNAMS  TISANGGTTYYADSVKG
18 |HMLAHE HA GAGGTGCAGCTGGTGG, LC388836.1 Adachi Y et EVOLVESGGGVVRPGGS IGHV3-20*1GHI4*02 IGHD3-10%01 GFRFGDYG INRNGGST ARIRTPYGS DYGWG  SINRNGGSTGYADSVKG
19 |HMLAH7 HA GAGGTGCAGCTGGTGG, LC388837.1 Adachi Yet EVOLVESGGGLEQPGGS IGHV3-23*1GHI4*02  IGHD4/OR15-42*01,IGHD4/OR15-4b%01 GFTFSTYA ISANAGST ATTMVIVG TYAMS  TISANAGSTYYADSVKG
20 |HMLAHE  HA CAGGTGCAGCTGGTGC/ LC388838.1 Adachi Y et QUOLVQSGAEVKKPGSS IGHV1-69* IGHI4*02  IGHD6-19%01 GGTFSNSA IIANLGIR  TTHLYGSRP NSAIH  RIIANLGIRNYAQNFRD.
21 |HMLAH9  HA CAGGTGCAGCTACAACA LC388839.1 Adachi Yet QVOLQQWGAGLLKPSE IGHV4-34*1GHI4*02  IGHD6-19%01 GGSFSVYQ VNQSGTT  ARIGGGGWVYQWS  EVNQSGTTNYNPSLKS
22 |HMLAHIO0 HA GAGGTGCAGCTGGTGG, LC388840.1 Adachi Y et EVQLVESGGGLVQPGGS IGHV3-23* 1GH)5 *01,1 IGHD2-15%01,IGHD2-2*01,1GHD2-2*02 GFSFSNFA ISTSGGTT AQFARIRLVINFAMS  VISTSGGTTYYADSVRG
23 |HMLAHL1 HA GAGGTGCAGCTGGTGG, LC388841.1 Adachi Y et EVQLVESGGGLIQPGGSL IGHV3-48* IGHI5*02  IGHD6-13%01 GFGLSSYE ITSNGRTI  XYIDRCSW(SYEMN  YITSNGRTIDYADSVKG
24 |HMLAHI2 HA CAGGTGCAGCTGGTGC/ LC388842.1 Adachi Y et QUOLVQSGAEVKKPGAS IGHV1-8%0.IGHI5*02  IGHD6-6°01 GYTFTSYD  MNPNSGKT SYDIN s
25 |HMLAHI3 HA CAGGTGCAGCTGCAGG: LC388843.1 Adachi Yet QVOLQESGPGLVKPSETL IGHVA-59* IGHI3 *01,1 IGHD5-24*01 GVSMNSNE IYYTGKT  ARRAMASV SNHWS  YIYYTGKTFYNPSLQS

26 |HMLAHL4 HA CAGGTGCAGCTACAGC LC388844.1 Adachi Y et QVQLQQWGAGLLKPSE IGHV4-34*(1GHI4*02  IGHD2-2°01,1GHD2-2+02,1GHD2-2*03 GGSFRGYF SHHTGNS ARTRGYCSLGYFWS  ESHHTGNSNFNPSLKS
27 |HMLAHLS HA CAGGTGCAGCTGGTGC/ LC388845.1 Adachi Y et QUOLVOSGAEVKKPGSS IGHV1-69*IGHI6*02  IGHD3-10%01 GPMFSRSA IPTVDLK  ARMGSGSS RSAFS  RIIPTVDLKNYAQGKFQG
28 |HMLAHIE HA CAGGTGCAGCTGGTGC/ LC388846.1 Adachi Yet QUOLVQSGAEVKKPGAS IGHV1-2*0.IGHI3 *01,1 IGHD3-10*01,IGHD3-10*02,IGHD3-16701 GYIFNNYY LNPDTGET ARGESFSRSNYYLH  WLNPDTGETTFPQKFEA
29 |HMLAHL7 HA GAGGTGCAGCTGGTGG. LC388847.1 Adachi Y et EVOLVESGGSLVQPGGS! IGHV3-66* 1GHI3*02  IGHD5-18%01,IGHDS5-5*01 GLTVSSSF  VYRVGTT  ANSRETALASSFMS  VWYRVGTTYYADSVKG

Figure 3.3: Examples from antigen-specificity. 2,204 unique influenza hemagglutinin (HA)
antibodies are provided with complete information for all six CDR sequences and VH/VL
gene expressions

Since many sequence features of public antibody responses to different foreign viruses
can be observed in Observed Antibody Space (OAS) [1] and Structural Antibody Database
(SAbDab) [2], we postulate that the dataset is sufficiently large for gathering avail-
able antigen-specific antibodies for training the model. The preprocessing stage includes
172,723 filtered paired sequences with appropriate target diseases and organisms, along
with 6,118 antibody structures available in the SAbDab. Since it is important to iden-
tify different antigens for distinguishing antibodies during the model training, we aim to
retrieve 6,273 unique SARS-CoV-2 antibodies from OAS [1], 5,547 unique Human Im-
munodeficiency Virus (HIV) antibodies, and 2,204 unique influenza hemagglutinin (HA)
antibodies from GenBank [22], with complete information for all six CDR sequences and
germline expressions. Among different antigens, those were mainly chosen because of large

number of published sequences and expressible antibodies binding to them.

OV2-201 Spike Chen etal. Cell Rep. 36:109604 (2021)

OV2-va Splke  CAGGAGI TCTTCTG MZ55555 MZ5555¢ Chen eta QEQLVQ; SSELTQD IGHV1-4¢ IGHIS*02 IGHD2-1¢ IGLV3-19 IGLI3*02 SLRNYF  GDN YSRHISGI
OV2-va Spike  CAGGTGC CAGGCA( MZ5555C MZ5555( Chen eta QVQLYVQ QAVLTQH IGHV1-8* IGHIA*02 IGHD2-12 IGLV5-45 IGL1°01 SGINVGT YKSDSDK MIWHNR
OV2-va: Spike  CAGGTGC CAGGCTC MZ5555]1 MZ55551 Chen eta QVLLYQS QAVLTQS IGHV1-8* IGHI4*02 IGLY5-45 |GU1*01 SGISVDT YRSDSDY MIWHSR
OV2-va Spke  CAGGTGC AATTTTA MZ55557 MZ5555: Chen eta QVQLVE! NFMLTQ) IGHV3-3( IGHI4%02 IGHD5-18 IGLV6-57 IGLI2°01, 5GSIASN EDN QsYDsss
OV2-va Spke  CAGATGC AATTTTA MZS555¢ MZ5555¢ Chen eta QMOLVE NFMLTQ) IGHV3-111GHIA*02 IGHDS-18 IGLVE-57 IGLU3*02 SGSIASN EDN  OSVDSSS
OV2-va Spke  CAGGTGC AATTTTA MZS555: MZ55552 Chen eta QVOLVE! NFMLTQI IGHV3-3 IGHIA*02 IGHD2-8¢ IGLVE-57 IGLI3*02 SGSIASN EDN  QSVDSSh
OV2-va Spke  CAGGTGC AATTTTA MZSS55¢ MZSSSSE Chen eta QVQLVE! NFMLTQI IGHV3-111GHIA*02 IGHDS-1€ IGLVE-57 IGLIZ*02 SGSIASN EDN  QSVDSSS
0C10  Spke  ATGAACI GACATCC MT62265 MT6226¢ Chi etal. | QVQLYQ DIQLTAS IGHV3-7* IGHI3*02 IGHD3-9" IGKV1-17 IGKI4*01 QGIKND AAS LQHNNYF
M-9H1 Spike  GAGGTGI GACATCC MT6227]1 MT62271 Chi etal. | EVOLLES' DIVMTQ: IGHV3-3( |GHJ4*02 IGHD3-1C IGKV1-17 IGKI4*01 RDIGGD AAS LQHKSYP
317-A8 Spike  GAGGTGI GACATCC MT6227¢ MT62274 Chi etal. | EVOLVQ! DIQMTQ IGHV7-4- |GHI4*02 IGHD3-3" IGKV1-33 IGKI4*01 QDISNY DAS QQYDNLE
317-A2 Spke  CAGGTCC GACATOC MT6227: MT6227: Chietal. | QVQLVQ DIVMTQ: IGHY7-4- IGHIE*02 IGHD2-1 IGKV1-39 IGKI1*01 QSISSY AAS  QQSYSTF
M-2G12Spke  CAGGTGC GACATCC MT6227C MT6227C Chi etal. | QVOLVE! DIQMTQ IGHV3-111GHIG*04 IGHD3-1€ IGKV1-39 IGKI1*01 QSVSSY DAS  QQNYST)
M-9F10 Spke  GAAGTG( GCCATCC MT62271 MT62271 Chi etal. | EVQLLOS AIRMTQS IGHV3-3* IGHI4®02 IGHDS-1¢ IGKV1-33 IGKIL*01 QNINYF AAS  QQSFVSI
317-A3 Spke  GAGGTG( GACATCC MT6227: MT6227: Chi etal. | EVQLLOS DIQMTH: IGHV3-4€ IGHJ3®02 IGHD3-1C IGKV1-33 IGKIL*01 QSISSY AAS  QQTYRPF
M-1482 Spke  CAGGTGC GCCATCC MT6227: MT6227: Chi etal. | QVOLLO! AIRMTQS IGHV3-3( IGHIS"02 IGHD2-2* IGKV1-39 IGKI2*01 QSISSY  AAS  QQSYSTF
M-144 Spke  CAGGTGC GACATCC MT6227: MT6227: Chi etal. | QVQLQE DIVMTQ; IGHV4-611GHI3*02 IGHD3-22 IGKY1-39 IGKI3*01 QNISNY AAS  QQSHSFE
M-1207 Spke  GAGGTGI GCCATCC MT62272 MT62272 Chi etal. | EVQLVES AIRMTQS IGHV3-9* IGHI3*02 IGHD2-2* IGKV1-39 IGKI3“01 QSITGY AAS  QOSYSTF
M-14€5 Spike  GAGGTGI GCCATCC MT6227: MT6227: Chi etal. | EVQLVES AIRMTQS IGHV3-3( |GHI4*02 IGHD1-2€ IGKV1-9% IGKIA*01 QGISSY AAS QALNsSY
317-A9 Spke  GAAGTGI GAAATA( MT6227 MT62274 Chi etal. | FVOLVQ! EIVMTQS IGHV1-24 |GHIG*03 1GHDS-1£ |GKV2-24 IGKI2*01 OSLVHST KIS, MaATOR

Figure 3.4: A dataset consisting of 6,273 SARS-CoV-2 targeting antibodies with full se-
quence & germline expressions
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3.2 Structural dataset augmentation

We seek to train the model on as many immunoglobulin structures as possible. From
the Structural Antibody Database (SAbDab) [2], we obtain 6,285 structures consisting of
paired antibodies and single-chain nanobodies. Given the remarkable success of AlphaFold
for modeling both protein monomers and complexes [21], we additionally explore the use
of data augmentation to produce structures for training.

To produce a diverse set of structures for data augmentation, we clustered the paired
and unpaired partitions of the Observed Antibody Space [1] at 40 % and 70 % sequence
identity, respectively. This clustering results in 16,100 paired sequences and 26,900 un-
paired sequences. We predict structures for both sets of sequences using the original Al-

phaFold model [21].

Synthetic structure database
(10x the number of non-redundant xtals)

€ OAS

Observed Antibody Space

1B unpaired sequences

@ OAS

Observed Antibody Space

118K paired sequences

\ 70% Sequence ID /

\\ 40% Sequence ID /‘/

\\\Clustering 4 _5' E{ s%w‘;:’ : ey ~ CIusterIng/ i
\ / /
L] ttt 1ttt |
= AlphaFold =—u
.’I IYY }P’ p a O ~. L
( T ) k ( D
16K paired sequences 23K unpaired sequences

Figure 3.5: AlphaFold is used to create a synthetic structure dataset from natural antibody
sequences

3.3 State-of-Art Approaches

After cleaning up redundant sequences, clustering down to more manageable pop-
ulation of immunoglobulins, and gathering synthetic crystal structures from antibody
prediction networks [7, 8, 21], it is right time to analyze state-of-art language models
incorporating both amino acid representations and structural information of antibodies.

Analysis of deep generative language models AntiBERTY [6] and IgLM [7] has demon-
strated that such methods can be applied to generate synthetic libraries that may ac-

celerate the discovery of therapeutic antibody candidates and provide new insights into
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antigen binding from repertoire sequences alone. However, due to the limited information
from amino acid representations, it is important that structural characteristics of antibod-
ies need to be incorporated to provide more insights about the design of immunoglobulins

and possible candidates binding to specific antigens like SARS-CoV-2.

[HEAVY] [HUMAN] E V Q [MASK] | Q P [SEP] L V[E - w R
1

IgLM f\

T tottt ot ottt ot
[HEAVY] [HUMAN] E V Q [MASK] | Q P [SEP] LV

.

Infilling perplexity

( Model input: [HEAVY][HUMAN] E'V Q [MASK] | QP [SEP]L V E S [ANS]
Original: EVQLVESIQP

350 % 30 4 50 % 70 % % Wo 0 T30
Mask position along sequence

Figure 3.6: (Left) IgLM formulates antibody design as a sequence-infilling problem based
on the Infilling by Language Modeling (ILM) framework. (Top right) IgL.M input layer
residue embeddings cluster to reflect amino acid biochemical properties.

As mentioned in "Research Objectives”, contrastive learning is one of the crucial self-
supervised representations in classification tasks where the loss is designed to maximize
difference between positive & negative samples. In this work, as we aim to solve the
antigen-specificity prediction with generated in silico structural datasets, and our exper-
imental sequence-structure examples from OAS, SAbDab, and GenBank, it is crucial to
utilize embeddings from language models AntiBERTY & Igl.M to reflect amino acid prop-
erties. Once the 3D learning representations from crystal structures will be obtained, this
will subsequently enable to apply a more robust, accurate supervised contrastive learning

model which includes both positive & negative candidates for antigen specificity.

Fain TFain
Vol Val
m—p— - A et A ATRET
Tain I Fain
Val Val

Figure 3.7: Initial results from CDR-H3 encodings [5] & Supervised Contrastive Loss [10]
without data augmentation
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Chapter 4

Future Work

Once we identify the epitope-paratope level interactions, binding sites, and neutraliza-
tion activities available from antibody datasets, we start experimenting with the bench-
mark architectures for contrastive representations which will be based upon SimCSE [10]
and SimCLR [11], along with appropriate graph/sequence level embeddings for antigen-
specificity. Further data augmentation techniques for amino acid level representations will
also be applied to improve the benchmark results of previous methods and efficiently create
the antibody repertoire targeting new pathogens.

In recap, our summary for future work and ablation studies in this project can be

summarized as follows:

e Obtain 3D surface-level representations of antibody structures, including in silico

synthetic datasets

e Train a classifier via contrastive learning to identify if an antibody is a potential
binder to a target antigen by using both sequence and structure-based representa-

tions (improving Fig. 3.7 architecture).

e Propose a novel data augmentation mechanism for antibody data to produce addi-
tional synthetic sequences/structures for learning better representations using con-

trastive learning algorithms.
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