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Chapter 1

Introduction

1.1 Background

The adaptive immune system of vertebrates is capable of mounting robust responses

to a broad range of potential pathogens. Critical to this flexibility are antibodies, which

are specialized to recognize a diverse set of molecular patterns with high affinity and

specificity. The overall role of an antibody is to bind to an antigen, e.g., a virus, present

it to the immune system, and stimulate an immune response. This natural role in the

defense against pathogens, e.g. SARS-COV-2, Influenza, makes antibodies an increasingly

popular choice for the development of new therapeutics.

An antibody consists of a heavy chain and a light chain, each composed of a variable

domain (VH/VL) and a constant domain, as shown in Fig. 1.1. The variable domain is

further divided into a framework region and three complementarity-determining regions

(CDRs). The three CDRs on the heavy chain are denoted as CDR-H1, CDR-H2, CDR-

H3, each occupying a contiguous subsequence in the framework region sequence. As the

most variable part of an antibody, CDRs are the main determinants of binding and neu-

tralization. Following current state-of-art approaches in computational biology [4-9], we

formulate antibody design as a CDR generation problem, conditioned on the framework

region (Fab) sequence.

Currently, monoclonal antibodies make up a rapidly growing segment of the global

pharmaceutical market. The global therapeutic monoclonal antibody market was valued

at approximately $150 billion in 2019 and is expected to generate revenue of $300 billion by
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Figure 1.1: Structures of an antibody and of common antibody fragments. An antibody
structure is shown on the left with the heavy (H) and light (L) chains in blue and green,
respectively. CDRs containing the paratopes are coloured in red, and the heavy and light
variable domains (VH and VL) are labelled. The antigen-binding fragment (Fab) region
is responsible for recognising the target, while the crystallisable fragment (Fc) region for
immune function and lysosome escape. The three CDR loops are highlighted in red on VH
domain.

the end of 2025 [13]. However, rational design of antibody-antigen interactions is hindered

by reliance on experimental methods such as crystallography, NMR, and cryo-EM, which

are low throughput and requires significant investments of time and resources that may

fail (Fig. 1.2).

In general, the needs for effective research or traditional diagnostics of antibodies

may require in vitro selection from large, well-designed antibody libraries conducted on

animal-derived experiments [5]. However, since each of different in vitro display systems,

computational antibody libraries, and animals-based experiments perform differently, it

makes almost impossible to predict in advance which platform will be most successful

for any particular therapeutic target. Consequently, many drug discovery programs today

use parallel approaches based on computational tools and machine learning to generate

antibody therapeutics, increasing the chances leads will be found and reducing the time

required [14]. Therefore, it is expected that research on novel computational methods are

going to be crucial for the development of safer and cost-efficient therapeutic antibodies

in the near future.
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Figure 1.2: Rational design of antibody-antigen interactions

1.2 Traditional Methods

In general, methods for computational antibody design roughly fall into two categories.

The first class is based on energy function optimization, which uses Markov Chain Monte

Carlo simulation to iteratively modify an antibody sequence and its structure to reach a

local minimum energy for the antibody structure and the interface between antibody and

antigen (Fig. 1.3). Similar approaches are also used in protein design [3, 4]. However, these

physics-based methods are computationally expensive, in which the designed sequence can

fold into a structure different from the designed structure, and our antigen-conditioned

objective can be more complicated than evaluating only physics-based binding energy

models [5, 9].
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Figure 1.3: Energy Optimization of Protein Sequences

1.3 Deep Learning-based Methods

The second methodology is based on generative models. For antibodies, they are mostly

sequence-based [15, 16], whereas regarding the proteins, authors from [17, 18, 19] further

developed models conditioned on a backbone structure or protein folding in general. Since

the best CDR structures are often unknown for new pathogens, most approaches co-

design sequences and structures for specific properties of targeted viruses, mimicking auto-

regressive models for graph generation.

In fact, the application of Natural Language Processing (NLP) algorithms, such as

Transformers [20], and Graph Neural Networks (GNN) have been proven to be efficient

for designing de-novo antibody sequences and structures [6, 7, 8, 9]. Particularly, due to

the limited antibody structures available in the structural antibody database [1, 2], most

of the recent research studies have focused on antibody sequence generation for paired im-

munoglobulin sequences using Bidirectional Encoder Representations from Transformers

(BERT) models [7, 8, 12] and (self-)supervised learning algorithms [6, 9]. However, there

has been a lack of studies that have investigated both structure-based and sequence-level

representations to filter positive candidates from an antibody dataset which may possibly

bind and neutralize specific pathogenic viruses.
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Chapter 2

Research Objectives

In this work, our aim is to use contrastive learning methods (Fig. 2.1) for learning

effective antibody representation (embeddings). In addition, we also intend to propose a

proper data augmentation for antibody sequences and their respective structural data.

Contrastive learning has recently achieved good results to classify images in computer

vision tasks [10, 11]. Using such self-supervised algorithms, the loss is designed to maximize

the difference between positive examples and negative examples. In our study, specifically,

positive examples could be regarded as antibodies that bind and neutralize to a specific

pathogenic virus, while negative examples would be antibodies which do not bind to the

specific antigen. We hypothesize that representation learned by contrastive learning using

structural-based and sequence-based data can help in the classification of possible binders

for specific antigens and learn good 3D/sequence representations for antigen-specificity

tasks.

Figure 2.1: Supervised vs self-supervised contrastive losses. Supervised contrastive learn-
ing considers different samples from the same class as positive examples, in addition to
augmented versions
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Figure 2.2: Cross entropy, self-supervised contrastive loss and supervised contrastive loss:
The cross entropy loss (left) uses labels and a softmax loss to train a classifier; the self-
supervised contrastive loss (middle) uses a contrastive loss and data augmentations to
learn representations. The supervised contrastive loss (right) also learns representations
using a contrastive loss, but uses label information to sample positives in addition to
augmentations of the same image. Both contrastive methods can have an optional second
stage which trains a model on top of the learned representations.

Our main objectives during this work can be summarized as follows:

• Generate a synthetic antibody structure dataset by using State-Of-The-Art (SOTA)

deep learning-based antibody structure prediction networks.

• Train a classifier via contrastive learning to identify if an antibody is a potential

binder to a target antigen by using sequence-based and structure-based representa-

tions (similar to Fig 2.2).

• Propose a novel data augmentation mechanism for antibody data to produce addi-

tional synthetic sequences/structures for learning better representations using con-

trastive learning algorithms.

• Generate novel antigen-specific antibody candidates with traditional computational

methods such as Rosetta Antibody Design (RAbD) [3] and deep learning-based

generative methods. Evaluate the candidates in silico using the contrastive learning-

based classifier, and select the best ones for real wet-lab experiments to compute

binding affinity, solubility and developability parameters.
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Chapter 3

Methodology

One of the important aspects of therapeutic antibody design is to collect antigen-

specific data that could be processed and filtered for efficient learning representations. As

we aim to train a (self-)supervised contrastive classifier using both sequence and structure,

the first step is to gather those sequence and structure data for antibodies that are con-

firmed to neutralize target antigens. In the next subsection, we detail how we are collecting

the antibody sequences and structures to create a dataset and how we are inferring syn-

thetic structures for antibodies that only contain sequence data using deep learning-based

antibody structure prediction networks.

3.1 Datasets

3.1.1 Structural Antibody Database (SAbDab)

Structural antibody database [2] is an online resource containing all the publicly avail-

able antibody structures annotated and presented in a consistent fashion. The data are

annotated with several properties including experimental information, gene details, correct

heavy and light chain pairings, antigen details and, if available, antibody-antigen binding

affinity. As in Fig. 3.1, the user can retrieve the full set of structures, specific entries by

specifying their Protein Data Bank (PDB) code or to create subsets based on search crite-

ria [1]. Structures can be searched based on the experimental methods used to determine

the structure, species of the antibody, type of the antigen, presence of affinity values in the

annotation and presence of amino acid residues at specific sequence positions.
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Figure 3.1: SAbDab’s workflow. New structures from the PDB are weekly analyzed to
find antibody chains. These structures are then annotated with a number of properties
and stored in SAbDab. Users may access and select this data using a number of different
criteria. Structures and annotations can be downloaded individually or as a dataset.

3.1.2 Observed Antibody Space (OAS)

The Observed Antibody Space (OAS) database was created in 2018 to offer clean,

annotated, and translated repertoire data. Driven by increasing volume of data and the

appearance of paired (VH/VL) sequence data during last 4 years, OAS became accessi-

ble via a web-server [1], with standardized search parameters and sequence-based search

option, to provide 1.5 billion unpaired sequences from 80 studies, including recent stud-

ies featuring SARS-CoV-2 data, and 172, 723 paired sequencing data from five studies.

Providing the nucleotides for the VH/VL chains, the database also contains additional

sequence annotations, such as the antibodies junction sequence and whether it is a pro-

ductive sequence during wet-lab experiments, allowing for a fast initial query of 1,000

antibody sequences similar to a given sequence of interest.

Figure 3.2: Downloading from OAS. (a) The sequence search tab for unpaired sequences,
with the search options filled for heavy chain sequences from SARS-CoV-2 infected patients
(shown with red arrows). (b) The search result, with each data unit matching the search
and a downloadable link containing the links for the relevant data units (with a red arrow)
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3.1.3 Antigen-specific repertoire

Figure 3.3: Examples from antigen-specificity. 2, 204 unique influenza hemagglutinin (HA)
antibodies are provided with complete information for all six CDR sequences and VH/VL
gene expressions

Since many sequence features of public antibody responses to different foreign viruses

can be observed in Observed Antibody Space (OAS) [1] and Structural Antibody Database

(SAbDab) [2], we postulate that the dataset is sufficiently large for gathering avail-

able antigen-specific antibodies for training the model. The preprocessing stage includes

172, 723 filtered paired sequences with appropriate target diseases and organisms, along

with 6, 118 antibody structures available in the SAbDab. Since it is important to iden-

tify different antigens for distinguishing antibodies during the model training, we aim to

retrieve 6, 273 unique SARS-CoV-2 antibodies from OAS [1], 5, 547 unique Human Im-

munodeficiency Virus (HIV) antibodies, and 2, 204 unique influenza hemagglutinin (HA)

antibodies from GenBank [22], with complete information for all six CDR sequences and

germline expressions. Among different antigens, those were mainly chosen because of large

number of published sequences and expressible antibodies binding to them.

Figure 3.4: A dataset consisting of 6, 273 SARS-CoV-2 targeting antibodies with full se-
quence & germline expressions
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3.2 Structural dataset augmentation

We seek to train the model on as many immunoglobulin structures as possible. From

the Structural Antibody Database (SAbDab) [2], we obtain 6, 285 structures consisting of

paired antibodies and single-chain nanobodies. Given the remarkable success of AlphaFold

for modeling both protein monomers and complexes [21], we additionally explore the use

of data augmentation to produce structures for training.

To produce a diverse set of structures for data augmentation, we clustered the paired

and unpaired partitions of the Observed Antibody Space [1] at 40 % and 70 % sequence

identity, respectively. This clustering results in 16, 100 paired sequences and 26, 900 un-

paired sequences. We predict structures for both sets of sequences using the original Al-

phaFold model [21].

Figure 3.5: AlphaFold is used to create a synthetic structure dataset from natural antibody
sequences

3.3 State-of-Art Approaches

After cleaning up redundant sequences, clustering down to more manageable pop-

ulation of immunoglobulins, and gathering synthetic crystal structures from antibody

prediction networks [7, 8, 21], it is right time to analyze state-of-art language models

incorporating both amino acid representations and structural information of antibodies.

Analysis of deep generative language models AntiBERTy [6] and IgLM [7] has demon-

strated that such methods can be applied to generate synthetic libraries that may ac-

celerate the discovery of therapeutic antibody candidates and provide new insights into
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antigen binding from repertoire sequences alone. However, due to the limited information

from amino acid representations, it is important that structural characteristics of antibod-

ies need to be incorporated to provide more insights about the design of immunoglobulins

and possible candidates binding to specific antigens like SARS-CoV-2.

Figure 3.6: (Left) IgLM formulates antibody design as a sequence-infilling problem based
on the Infilling by Language Modeling (ILM) framework. (Top right) IgLM input layer
residue embeddings cluster to reflect amino acid biochemical properties.

As mentioned in ”Research Objectives”, contrastive learning is one of the crucial self-

supervised representations in classification tasks where the loss is designed to maximize

difference between positive & negative samples. In this work, as we aim to solve the

antigen-specificity prediction with generated in silico structural datasets, and our exper-

imental sequence-structure examples from OAS, SAbDab, and GenBank, it is crucial to

utilize embeddings from language models AntiBERTy & IgLM to reflect amino acid prop-

erties. Once the 3D learning representations from crystal structures will be obtained, this

will subsequently enable to apply a more robust, accurate supervised contrastive learning

model which includes both positive & negative candidates for antigen specificity.

Figure 3.7: Initial results from CDR-H3 encodings [5] & Supervised Contrastive Loss [10]
without data augmentation
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Chapter 4

Future Work

Once we identify the epitope-paratope level interactions, binding sites, and neutraliza-

tion activities available from antibody datasets, we start experimenting with the bench-

mark architectures for contrastive representations which will be based upon SimCSE [10]

and SimCLR [11], along with appropriate graph/sequence level embeddings for antigen-

specificity. Further data augmentation techniques for amino acid level representations will

also be applied to improve the benchmark results of previous methods and efficiently create

the antibody repertoire targeting new pathogens.

In recap, our summary for future work and ablation studies in this project can be

summarized as follows:

• Obtain 3D surface-level representations of antibody structures, including in silico

synthetic datasets

• Train a classifier via contrastive learning to identify if an antibody is a potential

binder to a target antigen by using both sequence and structure-based representa-

tions (improving Fig. 3.7 architecture).

• Propose a novel data augmentation mechanism for antibody data to produce addi-

tional synthetic sequences/structures for learning better representations using con-

trastive learning algorithms.
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