

Protein Sequence Design in a Latent Space via Model-based Reinforcement Learning

Our approach

State: latent vector

Minji Lee O,1 Luiz Felipe Vecchietti O,3 Hyunkyu Jung 1,3,4 Hyunjoo Ro 4 Meeyoung Cha 3,1 Ho Min Kim 2,4

 1 School of Computing, KAIST 2 Graduate School of Medical Science and Engineering, KAIST

³Data Science Group, Institute for Basic Science ⁴Center for Biomolecular and Cellular Structure, Institute for Basic Science

1. Introduction

Protein sequence design

- Enhancing the functionality of a protein
- Enhancing the cellular fitness of an organism
- Directed evolution, data driven methods

Challenges of protein sequence design

- Vast search space
- Non-functional >> Functional sequences
- Data-driven methods
- Reinforcement learning [1]
- Bayesian optimization [2,3,4]
- Generative models [5]

Still challenging to generate optimized sequences that are experimentally validated. Why?

- **Inefficiency.** Optimization as amino acid addition/mutation.

We model protein sequence design as a Markov Decision Process (MDP) to optimize the latent representation by learned perturbation

Baseline (learned mutation)

State: sequence Action: mutation ength (200~)

Amino acids (20)

Previous approach (learned addition)

Policy **Action**: perturbation

(a) Sequence encoder-decoder

Latent representation Amino acid sequence

2. Methodology

Sequence encoder

- 1. Pre-trained protein language model encoder is used to obtain latent embeddings
- 2. Dimensionality reduction → Used as a state of RL agent Sequence decoder
- 1. Recover embeddings from reduced representation
- 2. Pre-trained decoder head to recover sequence Protein functionality prediction
- Predict functionality from sequence
- Use pre-trained protein language model as a backbone
- Optimization oracle (reward) and evaluation oracle trained separately to prevent information leakage

Model-based reinforcement learning

Trains a policy using an off-policy RL algorithm that models reward function based on the functionality predictor

3. Experimental setup

Datasets: 2 proteins with different length and function

- Green fluorescent protein (GFP) [6]
- Imidazoleglycerol-phosphate dehydratase (His3) [7]
- Evaluation
- 1. Optimize 100 mutants of the protein
- 2. Evaluate top-10 sequences

4. Results

Model	Performance	Novelty	Original	dist(WT)	Diversity	Chromophore
Ours	3.491 ± 0.352	8.451	100%	7.700	6.311	100%
Directed evolution	3.287 ± 0.237	7.704	-	6.849	4.858	100%
CbAS	3.155 ± 0.153	7.712	80%	6.900	1.956	100%
Random-1	2.824 ± 0.100	6.611	80%	7.186	7.716	100%
Random-5	2.280 ± 0.275	13.91	100%	9.950	12.37	90%
Random-P	1.511 ± 0.797	14.71	100%	14.15	14.62	100%
BO	0.581 ± 0.095	36.96	100%	36.70	6.867	100%
DynaPPO	0.004 ± 0.003	218.9	100%	219.3	224.1	0%
GFlowNet	0.000 ± 0.002	199.4	100%	200.1	12.53	0%

Original dist(WT) Diversity Model Novelty Performance 3.521 Ours 0.945 ± 0.091 8.361 60% 10.95 **CbAS** 2.356 0.749 ± 0.157 7.287 90% 4.700 7.372 7.350 7.716 Random-1 0.858 ± 0.058 80% Random-5 0.678 ± 0.096 9.777 100% 8.950 12.37 Directed evolution 0.616 ± 0.110 6.889 6.710 6.942 26.70 27.47 DynaPPO -0.201 ± 0.142 27.41 100% -0.313 ± 0.065 26.17 100% 27.50 4.756 BO

5. Ablation studies

State and action modeling

Model	Performance	Novelty	Diversity	Chromophore
Ours	3.491 ± 0.352			100%
Directed evolution	3.287 ± 0.237			100%
Swersky et al. (2020) on latent space	2.601 ± 0.912	8.077 ± 2.58	6.600	100%
Random perturbation	1.511 ± 0.797	14.71 ± 5.90	14.616	100%

Representation analysis

State	Action	GFP	His3
Latent vector	Perturbation on latent vector	3.491 ± 0.352	0.945 ± 0.091
Directed evolution		3.287 ± 0.237	0.616 ± 0.110
Sequence Latent vector Sequence	Generate sequence Generate sequence Amino acid addition	$\begin{array}{c c} 0.006 \pm 0.004 \\ 0.005 \pm 0.003 \\ 0.004 \pm 0.003 \end{array}$	-0.148 ± 0.043 -0.139 ± 0.144 -0.201 ± 0.142

- [1] Angermueller, Christof, et al. "Model-based reinforcement learning for biological sequence design." ICLR (2019)
- [2] Belanger, David, et al. "Biological Sequences Design using Batched Bayesian Optimization." (2019)
- [3] Stanton, Samuel, et al. "Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders." (2022). [4] Brookes, David, et al. "Conditioning by adaptive sampling for robust design." ICML (2019)
- [5] Jain, Moksh, et al. "Biological sequence design with gflownets." ICML (2022)

6. How the trained policy traverses the functionality landscape

