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1. Introduction 
Protein sequence design

• Enhancing the functionality of a protein 
• Enhancing the cellular fitness of an organism 
• Directed evolution, data driven methods 
Challenges of protein sequence design

• Vast search space 
• Non-functional >> Functional sequences 
Data-driven methods

• Reinforcement learning [1] 
• Bayesian optimization [2,3,4] 
• Generative models [5] 
Still challenging to generate optimized sequences that are 
experimentally validated. Why? 
1. Inefficiency. Optimization as amino acid addition/mutation.  
2. Oracle trained without negative examples.
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We model protein sequence design as a Markov Decision Process (MDP)  
to optimize the latent representation by learned perturbation
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• Rich, compressed info 
• Low dimension
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2. Methodology 
Sequence encoder

1. Pre-trained protein language model encoder is used to obtain 

latent embeddings 
2. Dimensionality reduction → Used as a state of RL agent 
Sequence decoder

1. Recover embeddings from reduced representation 
2. Pre-trained decoder head to recover sequence 
Protein functionality prediction

• Predict functionality from sequence 
• Use pre-trained protein language model as a backbone 
• Optimization oracle (reward) and evaluation oracle trained 

separately to prevent information leakage  
Model-based reinforcement learning

Trains a policy using an off-policy RL algorithm that models reward 
function based on the functionality predictor
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3. Experimental setup 
Datasets: 2 proteins with different length and function

• Green fluorescent protein (GFP) [6] 
• Imidazoleglycerol-phosphate dehydratase (His3) [7] 
Evaluation 

1. Optimize 100 mutants of the protein  
2. Evaluate top-10 sequences

4. Results

5. Ablation studies
State and action modeling

Representation analysis

6. How the trained policy traverses the functionality landscape

Optimization leads to lower fitness
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