Protein Sequence Design in a Latent Space via
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1. Introduction

Protein sequence design
® [Enhancing the functionality of a protein

We model protein sequence design as a Markov Decision Process (MDP)
to optimize the latent representation by learned perturbation
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experimentally validated. Why?

1. Inefficiency. Optimization as amino acid addition/mutation.
2. Oracle trained without negative examples.
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4. Results
Model Performance | Novelty | Original | dist(WT) | Diversity | Chromophore Model Performance | Novelty | Original | dist(WT) | Diversity
Ours 3.491 £0.352 | 8.451 100% 7.700 6.311 100% Ours 0.945 £ 0.091 8.361 60% 10.95 3.521
Directed evolution | 3.287 £ 0.237 | 7.704 - 6.849 4.858 100% CbAS 0.749 £ 0.157 7.287 90% 4.700 2.356
CbAS 3.155+£0.153 | 7.712 80% 6.900 1.956 100% Random-1 0.858 £ 0.058 7.372 80% 7.350 7.716
Random-1 2.824 £0.100 | 6.611 80% 7.186 7.716 100% Random-5 0.678 £ 0.096 9.777 100% 8.950 12.37
Random-5 2.280+0.275 | 1391 100% 9.950 12.37 90% Directed evolution | 0.616 £0.110 6.889 - 6.710 6.942
Random-P 1.511 £0.797 | 14.71 100% 14.15 14.62 100% DynaPPO -0.201 £0.142 | 2741 100% 26.70 27.47
BO 0.581 £0.095 | 36.96 100% 36.70 6.867 100% BO -0.313 £ 0.065 26.17 100% 27.50 4.756
DynaPPO 0.004 £0.003 | 218.9 100% 219.3 224.1 0%
GFlowNet 0.000£0.002 | 1994 100% 200.1 12.53 0% i i i )
6. How the trained policy traverses the functionality landscape
5. Ablation studies (a) (b) ; 3.5
State and action modeling oy . 30
O 3 ’5-3 .
Model Performance Novelty | Diversity | Chromophore D . % L )
Q ' .
Ours 3.491 +£0.352 18451 £2.05| 6.311 100% c?: : C%‘?p
Directed evolution 3.287 £0.237 | 7.704 £2.66 | 4.858 100% o . % o 20
Swersky et all (2020) on latent space | 2.601 £ 0.912 | 8.077 £2.58 | 6.600 100% . /)% ¢
Random perturbation 1.511 £0.797 | 14.71 £5.90 | 14.616 100% . e 15
Representation analysis Optmizelichipatig s
. ; () (d)
State | Action GFP His3 10
Latent vector | Perturbation on latent vector | 3.491 £ 0.352 | 0.945 + 0.091 .
Directed evolution 3.287+0.237 | 0.616+0.110 * 0-9
Sequence Generate sequence 0.006 £ 0.004 | -0.148 +£0.043 v v 0.6
Latent vector | Generate sequence 0.005 £ 0.003 | -0.139 +£0.144 . ° L
Sequence Amino acid addition 0.004 + 0.003 | -0.201 +£0.142 /%) i@? o 0r 0.3
®. % y 0% e x
ST v o® v
[1] Angermueller, Christof, et al. "Model-based reinforcement learning for biological sequence design." ICLR (2019) b ® GOp’[i;ﬂized state 1 —— Optimization leads to higher fitness 0.0

[2] Belanger, David, et al. "Biological Sequences Design using Batched Bayesian Optimization." (2019)
[3] Stanton, Samuel, et al. "Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders.” (2022).

[4] Brookes, David, et al. "Conditioning by adaptive sampling for robust design." ICML (2019)
[5] Jain, Moksh, et al. "Biological sequence design with gflownets.” ICML (2022)

[6] Sarkisyan, Karen S., et al. "Local fitness landscape of the green fluorescent protein." Nature (2016)
[7] Pokusaeva, Victoria O., et al. "An experimental assay of the interactions of amino acids from orthologous sequences shaping
a complex fitness landscape." PLoS genetics (2019)



