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요 약
Recently, deep learning methods based on graph representations achieved breakthrough results in protein sequence design.

One of these methods, named ProteinMPNN, increased substantially the success rate of designs in wet lab experiments. How-
ever, for antibody structures, given the limited number of experimental structures and the diversity of loop-like conformations
in variable areas, sequence design remains challenging. In this paper, we conduct a study on the performance of protein
sequence design approaches for a collection of antibody structures and compare the findings with a proposed model trained
solely on antibody data. When compared to a model trained on general protein datasets, structures predicted for sequences
designed by the proposed antibody-specific model achieve a reduced root-mean-square deviation with the native structure.

1 Introduction

Lately, the Covid-19 pandemic highlighted the need for the fast

development of therapeutics able to neutralize a target antigen. For

that, a protein structure able to interact with the antigen is desired.

With this designed structure, a protein sequence should be decoded

to maximize the chances of effective expression and binding in wet

lab experiments. This process of decoding an amino acid sequence

from a protein structure is defined as a protein sequence design

problem.

Recent methods that represent a protein as a proximity graph

over amino acids achieved breakthrough results in protein se-

quence design [1-5]. In a graph-based protein representation, each

node represents an amino acid (or atom) and each edge of the graph

represents the structural neighborhood of an amino acid (or atom).

Representing the protein as a graph, the features are associated to

nodes, i.e. node features, and to edges, i.e. edge features. Rela-

tional reasoning over this graph structure can be performed using

deep learning methods such as Graph Neural Networks (GNNs)

[6] and Geometric Vector Perceptrons (GVPs) [3], and, from the

features learned, the protein sequence is decoded. These methods

are highly computationally efficient being able to design sequences

in a few seconds. Additionally, a method name ProteinMPNN [5]

has been experimentally validated with high developability in wet

lab experiments across different tasks.

In this paper, we aim to study the performance of protein se-

quence design methods for a set of antibodies. Sequence design
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of antibodies is challenging, given that only a small subset of pro-

tein datasets contain antibody structures. Also, the loop-like con-

formations and vast diversity of possible amino acid sequences in

the antibody variable regions, e.g. the complementary-determining

regions (CDRs), increases the difficulty of this problem. We pro-

pose and train an antibody-specific model, named Ing Ab, based

on the algorithm introduced by Ingraham et al [1]. For comparison,

we choose the current state-of-the-art method for protein sequence

design, ProteinMPNN [10]. A set of antibodies introduced after

the training of our model is collected from an antibody structure

database, SabDab [9], for evaluation. Sequences obtained from

Ing Ab and ProteinMPNN then have their structure predicted by an

antibody-specific structure prediction network named IgFold [7],

and the predicted structures are compared with the native antibody

structures. We show that the structures predicted for the sequences

designed by the proposed antibody-specific model achieves lower

root-mean-square deviation (RMSD) when compared with Protein-

MPNN, a model trained using a general protein dataset.

2 Background

2.1 Graph-Based Protein Sequence Design (Ingraham et al,
2019)

Ingraham et al [1] presented a relational language model for de-

coding a protein sequence from a graph representation of a target

structure. The architecture is divided into an encoder and a de-

coder. The encoder is responsible to extracting features from the

3D structures using multi-head self-attention on the graph. Only

the k-nearest neighbors of a node are considered. Then a decoder



그림 1: Framework overview of graph-based deep learning meth-
ods for protein/antibody sequence design.

predicts the protein sequence autoregressively using causal self-

attention, i.e. taking into account nodes that were already decoded.

In [1] each node is related to an amino acid in the protein sequence.

The node features includes the amino acid identity and dihedral an-

gles of the protein backbone. The edge features are composed by

the distance and orientations between two residues. Also, as edge

features, hydrogen bonds and contact information are included.

2.2 ProteinMPNN

ProteinMPNN [5] uses a message passing neural network

(MPNN) with an encoder-decoder architecture, similarly to [1], to

predict the protein sequence. In addition to decoding the sequence

in from N to C terminus (first-to-last amino acid in sequence) in

a sequential manner, an order agnostic autoregressive model in

which the decoding order is randomly sampled was proposed. This

feature gives additional flexibility to the model, including the pos-

sibility to design protein complexes. A main difference between

ProteinMPNN and the method proposed by Ingraham et al [1] is

observed in the modeling of node features and edge features. Pro-

teinMPNN embed edges but do not include any node features. The

edge features includes the distances between atoms of the protein

backbone, distances between amino acids in the same chain calcu-

lated in the sequence space (relative positional encoding), and an

binary feature indicating if residues are from the same or different

chains.

3 Methodology

3.1 ProteinMPNN Model

In our experiments, we use the ProteinMPNN model available

in [5]. The model architecture consists of 3 encoder and 3 decoder

layers with hidden dimensions set to 128. The dataset used for

training the model consists of 19700 single-chain protein structures

which are chosen and split based on the CATH dataset [10]. It is

noted that CATH includes both both general proteins and antibod-

ies. Even ProteinMPNN includes order agnostic decoding, in our

experiments we decode the antibody structure from the beginning

of the heavy chain to the end of the light chain using the sampling

temperature set to 0.1.

3.2 Antibody-specific Model

3.2.1 Antibody Data

For training the proposed antibody-specific model, we need a

dataset which contains a diverse set of antibody structures. In this

work, the SAbDAb [9] is used. SabDab currently includes ap-

proximately 6685 antibody structures that are available in the Pro-

tein Data Bank (PDB) [11]. Here, our focus in only in generating

the sequence for the variable regions of the antibody. With that in

mind, the IMGT server [12] is used to obtain parts of the antibody

structure related to its variable region (heavy and light chains). Af-

ter pre-processing the data, our final dataset size consists of 6299

antibodies.

3.2.2 Ing Ab Model

The architecture for training our antibody-specific model is sim-

ilar to the one proposed in Ingraham et al [1]. For training the

dataset was split into train (95%), validation (2.5%), and test sets

(2.5%). As Ingraham et al can only decode single chain proteins,

we concatenated heavy and light chains as a single chain. Af-

ter performing a preliminary hyperparameter search, we train our

model for 100 epochs with the batch size set to 6000. Similarly to

the ProteinMPNN model, the sampling temperature is set to 0.1.

4 Results

To evaluate ProteinMPNN and Ing Ab we prepared a reference

dataset consisting of 112 antibody structures, that were added to

SabDab after the training of our model. For each model, Protein-

MPNN and Ing Ab, we generated 50 amino acid sequences for

each antibody structure in the evaluation set. Each of the generated

sequences was added as an input to IgFold for antibody structure

prediction. In this way, we have predicted 112x50 structures for

each model. The main metric used for comparison is the RMSD

value between the predicted structure and the native antibody struc-

ture. The structures are aligned and the distances calculated using

Cealigner. Additionally, we add the predicted RMSD (pRMSD)

that is the output of IgFold that indicates the confidence of the net-

works in its predictions for further analysis.

The results obtained for sequences generated by ProteinMPNN

and Ing Ab are shown in Table 1. It is shown that the structures



그림 2: Comparison between Ing Ab and ProteinMPNN for each
structure in the evaluation set (x-axis). A positive number (blue)
indicate structures in which Ing Ab outperforms ProteinMPNN.

predicted for sequences generated by Ing Ab outperforms Protein-

MPNN in all metrics evaluated. In general, the structures predicted

by IgFold for sequences generated by Ing Ab achieves lower mean

RMSD and minimum RMSD when compared to the native struc-

ture. Additionally, the pRMSD metric, indicating the confidence

of IgFold in the antibody structure prediction, is also lower for

Ing Ab when compared to ProteinMPNN.

표 1: Comparison of RMSD and confidence metrics with struc-
tures predicted by IgFold for the sequences generated with Pro-
teinMPNN and Ing Ab.

Model RMSD IgF (mean) RMSD IgF (min) pRMSD

ProteinMPNN 1.9156 0.7252 0.8333
Ing Ab (ours) 1.5866 0.5624 0.6977

Figure 2 show how the mean RMSD is improved using Ing Ab

for each test sequence. The improvement in RMSD, calculated by

subtracting the mean RMSD obtained by ProteinMPNN and the

mean RMSD obtained by Ing Ab is shown. It can be observed in

Fig. 2 that Ing Ab achieves lower mean RMSD for the majority of

the antibody structures evaluated. In Fig. 3 we also evaluate the

amino acid distribution generated by Ing Ab and ProteinMPNN

for one of the antibodies in the evaluation set. It is seen that the

sequence generated by Ing Ab is closer to the native sequence, dif-

fering with only one residue if sampling is performed in a greedy

fashion. We suggest that training the network with antibody-only

data may lead the generation of sequences with closer character-

istics to native antibodies when compared to ProteinMPNN that is

trained with general protein datasets.

그림 3: Amino acid distribution for the CDR-H2 of one of the
antibodies in the evaluation set (PDB=7v24). It is seen that Ing Ab
learns a distribution closer with the native antibody sequence.

5 Conclusion

In this paper we train an antibody-specific graph-based deep

learning model for sequence design. The proposed model is com-

pared with a state-of-the-art protein sequence design model and the

results show that training antibody-specific models leads to lower

RMSD with the native structure for the majority of test sequences

evaluated. As a future work, we plan to investigate different loss

functions that emphasize the importance of variable regions of an-

tibody structures.
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