
1. Introduction
Proteins are complex molecules responsible for different functions 

in the human body. Proteins are also an important part of products 
in the food, pharmaceutical, and chemical industries. Protein 
engineering, or the capacity to improve a protein's function and 
properties, is critical for its effective usage in various applications. 
Protein engineering is accomplished by introducing a series of 
mutations from a wild-type amino acid sequence, i.e., the protein to 
be optimized. However, because the sequence space for a target 
function is usually sparse [1], assessing the quality of mutations is 
not trivial. For a green fluorescent protein from Aequorea victoria 
(avGFP) wild-type, for example, 50% of the mutants with just four 
amino acid mutations become completely non-fluorescent [9]. 
Because the functionality to be optimized is directly guided by protein 
engineering, it is critical to accurately predict the change in 
functionality from experimental data. 

Proteins are represented by a sequence of characters, each of which 
represents one of the 20 standard amino acids. A protein sequence 
can be represented in its simplest form by a one-hot encoding vector 
given the number of amino acids. However, because proteins have 
evolutionary related sequences, previous studies [1,3,7] investigated 
the protein space by attempting to decipher their language: the amino 
acid sequence. These methods focus on obtaining a good 
representation of an amino acid sequence. Sequence-based methods 
typically train a feature extractor to generate continuous, fixed-size 
embeddings from the discrete, variable-size amino acid sequence, 
where the feature extractor consists of complex and state-of-the-art 
natural language processing models such as transformers [10]. The 
representations obtained by these methods can be used as input 
features to train machine learning algorithms and predict important 
functionalities and properties that can guide protein engineering.

Even though sequence-based methods can extract important 
features of the protein space, they do not take the protein structure 
into account. The protein structure in 3-dimensional space of its 
sequence of amino acids is closely related to its function. For 
example, the fold of avGFP is 11-stranded beta-barrels wrapped 

around a chromophore which emits fluorescence (Fig. 1). The 
beta-barrels form a cylinder around the chromophore, which is 
thought to be responsible for the high yield of fluorescence and 
stability [8]. 

Fig 1. Overview of the functionality prediction methods. 
Structure-based methods (top), sequence-based methods (below).
Using the protein structure as an input feature has been difficult due 

to the fact that protein structures could not be accurately predicted by 
in silico methods in the last decades. Recently, however, breakthrough 
results were obtained via deep neural network architectures for the 
structure prediction problem [2,4,5]. Structure prediction networks, 
notably trRosetta [4], are used to infer the structure of a mutant to 
guide the functionality predictor. The high accuracy of structure 
prediction networks opened the possibility of using these methods as 
tools for different applications, including the investigation of 
structure-based representations for predicting functionalities important 
for protein engineering. Changes in structure help improve the 
prediction methods when compared to using only sequence data, noting 
the difference between mutant sequences and wild type sequences
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요  약

 Enhancing the properties of a protein is crucial for its pharmaceutical and industrial usages. However, 
due to the vast protein space, evaluating the functionality of a protein is not trivial. Using the recent 
breakthroughs in deep learning-based structure prediction networks, we investigate a structure-based 
representation to train a protein functionality regressor that can accurately guide protein engineering. The 
proposed structure-based representation was used to train the functionality regressor of a green fluorescent 
protein from Aequorea victoria, and it outperformed sequence-based representation baselines. 



Fig 2. Features of trRosetta
 consists only on a few mutations on a long amino acid sequence.

In this paper, we investigate the use of a structure-based 
representation for the prediction of green fluorescence in a protein. 
The structure of a mutant is obtained using a deep learning-based 
structure prediction network [4], and a feature vector representation 
is proposed by comparing the mutant structure to the wild-type 
structure. This feature vector is then used to train an explainable 
machine learning (ML) regressor for the green fluorescent 
functionality prediction problem using an experimental dataset [9]. 
The proposed structure-based representation improves the regression 
accuracy when compared to the one-hot and sequence-based 
representations. 

2. Proposed Method
The proposed method is described in three parts. In the first and 

second parts, the structure-based representation used to prepare the 
dataset for training is presented. In the third part, ML methods used 
for training the functionality regressor are described. An overview of 
the training framework is presented in Fig. 3.
2.1. trRosetta structure prediction network

trRosetta [4] considers structure prediction as a classification problem 
of four features: !" #!"  distance between amino acids, i.e., !" #!"  
distance, $ dihedral, i.e,. rotation along the virtual axis connecting the 
!"  atoms of two amino acids, and two angles specifying the direction 
of the !"  atom of one amino acid in a reference frame centered on 
another amino acid (Fig. 2). The !" #!"  distance is discretized from 
a range of 2Å to 20Å with each bin size set to 0.5Å, also including 
one additional bin when the distance exceeds 20Å for a total of 37 
discrete classes. The Rosetta software suite [2] refines and reconstructs 
the final protein 3D structure using the probability distribution predicted 
by trRosetta for these properties.
2.2. Structure-based representation

The protein structure is inferenced from a sequence using the 
trRosetta structure prediction network described above. Here, our focus 
is on the !" #!"  distance probability distribution, or distogram, of 
the mutant sequence and wild type sequence. As distances are 
discretized into discrete bins, the argument max of the distogram is 
taken to obtain the bins with the maximum predicted probability. 
Protein distograms are symmetric and usually sparse. In order to reduce 
the sparsity of the final feature vector, the distograms are filtered to 
the pixels in which the wild-type distogram is non zero, i.e., the amino 
acid pair is closer than 20Å. The formalization of this process is as 

Fig 3. Overview of the framework.
follows. For a mutant distogram %&'( and wild-type distogram )&'( 
where &'(∈*+⋯-./0, the proposed set of normalized features 1  
is defined as 1 2*3Mi'j #+78.9:Wi'j ≠=0.

The normalization is performed to transform the discrete bins 
representing distances from 2Å to 20Å to values from 0 to 1, and 
distances larger than 20Å to a negative value. For the rest of this 
paper, the feature vector 1  is called focused distogram, and the 
unfiltered feature vector is called full distogram. 
2.3 ML-based fluorescence regressor 

For the experiments, three ML regressors are used: Ridge [11], 
ElasticNet [12], and gradient boosting [6]. Ridge is used to compare 
different representations due to its fast training and inference time. 
All three methods are used for ablation studies with the proposed 
structure-based representation.

3. Experimental Results
3.1. Experimental settings

The proposed method is trained and tested on the dataset proposed 
by Sarkisyan et al [9] which is comprised of 54045 sequences of 
avGFP mutants paired with their fluorescence value. The dataset was 
randomly split into train (90%) and test (10%). Smaller splits (10000 
and 500 samples) were also sampled from the train set for 
experiments. Distograms for the wild-type and all mutants were 
collected using trRosetta. Five protein representations, two 
structure-based and three sequence-based, were used for comparison: 
focused distogram, full distogram, one-hot encoding, UniRep [1], and 
UniRep64 [1]. UniRep and Unirep64 differ on the size of the 
generated feature vector. Using each representation as input, a ridge 
regressor with >2+?= is trained to predict fluorescence.
3.2. Results

Representation No.
Features

Train data size
Full 10000 500

Focused distogram 1443 0.4722 0.5488 0.8049
Full distogram 56169 0.4556 0.5295 1.0022

One-hot 4740 1.1171 1.1172 1.1190
UniRep [1] 1900 1.32‡ 0.6858† 0.8673†

UniRep64 [1] 64 1.0826 1.0889 1.1267

Table 1. Comparison of mean squared error between representations. 
All representations are tested on same test set except , . For , † ‡ †
5-fold cross-validation results are shown due to long inference time 
of UniRep. For , regression method is linear regression and we ‡
compared with the result from [14] which used the same dataset but 
with a different split. Best results on each dataset are highlighted. 
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Fig 4. Fluorescence prediction on train and test set. LightGBM 
is trained on full train set of focused distogram representation.

Regression
Methods

Data size
Full 10000 500

LightGBM [6] 0.3017 0.3511 0.6467
Ridge [11] 0.4722 0.5488 0.8049

ElasticNet [12] 1.1171 1.1171 1.1173

Table 2. Comparison of mean squared error between different 
regression methods. All representations are tested on same test set.

As shown in Table 1, the distogram representations achieved the 
smallest mean-squared error (MSE) for all datasets. For two larger 
train sets, full distogram achieved the best MSE and for the smallest 
train set, focused distogram achieved the best MSE. However, 
focused distogram showed competitive results when compared to full 
distogram with only 2.6% of the number of features. By filtering 
amino acid pairs that interact in the wild-type protein, the regressor 
was able to focus on important interactions.

Next, the performance of the proposed focused distogram with 
different regression methods is compared. Due to CPU limitations, we 
chose to conduct the ablation study only with the focused distogram. 
As shown in Table 2 and visualized in Fig. 4, the LightGBM regressor 
achieved the smallest MSE for all dataset splits. It is to be observed 
that the best  value of approximately 0.30 is better when compared 
to other sequence-based benchmark results [14].

4. Discussion
Existing works on protein representation learning [1,3,7] mostly 

focused on sequence-based methods. However, our comparison 
between representations shows that the structure of the protein 
encodes more valuable information than the embeddings extracted 
from the amino acid sequence. This result is quite reasonable since 
the structure has explicit relation with function, where amino acid 
sequence does not. Also, the sequence-based methods are trained on 
whole protein database, without the information about the target 
function. So the representation may not include the property of the 
protein which is crucial when predicting certain functionality. This 
is also the reason why sequence-based method show increased 
accuracy when fine-tuned to specific target proteins [13].

It was also interesting to observe that the proposed representation 
is able to achieve accurate results even with a dataset with only 500 
samples. Because collecting large amounts of functionality data 
experimentally is expensive, the ability to predict functionality 
successfully with limited data will be critical in guiding protein 
engineering and protein design in the years ahead.

However, the limitation of our work is that the distogram 
representation does not include the information of side chains. Side 
chains of amino acids determine the interaction of the protein with 
other molecules, and the properties of the protein. Therefore, we aim 
to design the representation that both includes the structure and side 
chains of each amino acid. Also, we plan to train deep learning-based 
regressor with full distogram representation on full train set, since 
we can overcome CPU limitation with batch training.

5. Conclusion
This paper studied a structure-based representation to train a protein 

functionality regressor that can be used for protein engineering. The 
structure-based representation is created by processing the structure 
inferenced by a deep learning-based structure prediction network. The 
proposed structure-based representation was used to train a green 
fluorescent protein functionality regressor and was able to achieve an 
improvement in the MSE over sequence-based representation 
baselines. Proposed structure-based representations also surpassed 
sequence-based representations by using only 5% of the original train 
set. Such results show the potential of using structure-based regressors 
as objective functions of various protein engineering and design tasks.
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