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Abstract 

 

Learning effective antibody representations is fundamental in multiple biological tasks, 

specifically for predicting antigen specificity to target pathogenic viruses. Current 

methodologies usually pretrain language models on a large number of unlabeled amino 

acid sequences of antibodies and then hyper-tune the models with some labeled data in 

downstream applications. Even though the sequence-based methods have proven to be 

effective in multiple realms, the power of pretraining on known antibody structures, 

which are available in exponentially small magnitude, has not been explored for antigen 

specificity predictions. 

In this project, we will explore a simple yet effective structure-based encoder for 

antibody representation learning to embed the geometric features of antibodies 

according to their 3D structural information. We pretrain the antibody graph encoder 

by leveraging Multiview contrastive learning and evaluate the antigen-specificity task 

for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Hemagglutinin 

Influenza (HA), and Human Immunodeficiency Virus (HIV). Experimental results on 

those viruses indicate comparatively high values for precision/recall/F1-score and 

reveal qualitatively accurate visualization of latent space for 20 protein families.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 



1. Research Background 
In this section, we explore the biological background of our research, its related previous works 

on traditional computational methods, and recent approaches applied with Deep Learning.  

 
Background 
The adaptive immune system of vertebrates is capable of mounting robust responses to a broad 

range of potential pathogens. Critical to this flexibility are antibodies, which are specialized to 

recognize a diverse set of molecular patterns with high affinity and specificity. The overall role 

of an antibody is to bind to an antigen, e.g., a virus, present it to the immune system, and 

stimulate an immune response. This natural role in the defense against pathogens, e.g. SARS-

COV-2, Influenza, makes antibodies an increasingly popular choice for the development of 

new therapeutics. 

 An antibody consists of a heavy chain and a light chain, each composed of a variable 

domain (VH/VL) and a constant domain, as shown in Fig. 1.1. The variable domain is further 

divided into a framework region and three complementarity-determining regions (CDRs). The 

three CDRs on the heavy chain are denoted as CDR-H1, CDR-H2, CDRH3, each occupying a 

contiguous subsequence in the framework region sequence. As the most variable part of an 

antibody, CDRs are the main determinants of binding and neutralization. Following current 

state-of-art approaches in computational biology [4-9], we formulate antibody design as a CDR 

generation problem, conditioned on the framework region (Fab) sequence. 

 
Figure 1.1: Structures of an antibody and of common antibody fragments. An antibody structure is 
shown on the left with the heavy (H) and light (L) chains in blue and green, respectively. CDRs 
containing the paratopes are colored in red, and the heavy and light variable domains (VH and VL) are 
labelled. The antigen-binding fragment (Fab) region is responsible for recognizing the target, while the 
crystallizable fragment (Fc) region for immune function and lysosome escape. The three CDR loops 
are highlighted in red on VH domain. 
 



 Currently, monoclonal antibodies make up a rapidly growing segment of the global 

pharmaceutical market. The global therapeutic monoclonal antibody market was valued at 

approximately $150 billion in 2019 and is expected to generate revenue of $300 billion by the 

end of 2025 [13]. However, rational design of antibody-antigen interactions is hindered by 

reliance on experimental methods such as crystallography, NMR, and cryo-EM, which are low 

throughput and requires significant investments of time and resources that may fail (Fig. 1.2). 

 

 
 

Figure 1.2: Rational design of antibody-antigen interactions 
 

 



Traditional Methods 
In general, methods for computational antibody design roughly fall into two categories. The 

first class is based on energy function optimization, which uses Markov Chain Monte Carlo 

simulation to iteratively modify an antibody sequence and its structure to reach a local 

minimum energy for the antibody structure and the interface between antibody and antigen 

(Fig. 1.3). Similar approaches are also used in protein design [3, 4]. However, these physics-

based methods are computationally expensive, in which the designed sequence can fold into a 

structure different from the designed structure, and our antigen-conditioned objective can be 

more complicated than evaluating only physics-based binding energy models [5, 9]. 

 

 
Figure 1.3: Energy Optimization of Protein Sequences. [Christoffer Norn et al. 2021] 

 
 
Deep Learning-based Methods 
The second methodology is based on generative models. For antibodies, they are mostly 

sequence-based [15, 16], whereas regarding the proteins, authors from [17, 18, 19] further 

developed models conditioned on a backbone structure or protein folding in general. Since the 

best CDR structures are often unknown for new pathogens, most approaches codesign 

sequences and structures for specific properties of targeted viruses, mimicking autoregressive 

models for graph generation. 

 In fact, the application of Natural Language Processing (NLP) algorithms, such as 

Transformers [20], and Graph Neural Networks (GNN) have been proven to be efficient for 

designing de-novo antibody sequences and structures [6, 7, 8, 9]. Particularly, due to the limited 

antibody structures available in the structural antibody database [1, 2], most of the recent 

research studies have focused on antibody sequence generation for paired immunoglobulin 

https://www.pnas.org/doi/10.1073/pnas.2017228118


sequences using Bidirectional Encoder Representations from Transformers (BERT) models [7, 

8, 12] and (self-)supervised learning algorithms [6, 9]. However, there has been a lack of 

studies that have investigated both structure based and sequence-level representations to filter 

positive candidates from an antibody dataset which may possibly bind and neutralize specific 

pathogenic viruses. Figure 1.4 illustrates the overall landscape of AI-based antibody design in 

terms of Antibody Structure Prediction, Language Modeling, Generative Models, and Binding 

Predictions. As indicated in the specificity task (i.e. blue), most of such prediction models 

condition on antigen’s epitope structures and utilize simple Convolutional Neural Network 

(CNN) and/or Graph Neural Networks (GNN) to capture antibody-antigen interactions.  

 

 
 

Figure 1.4: AI-based antibody development using language modeling and generative models 
 

  



2. Research Purpose 
In this work, our aim is to use contrastive learning methods (Fig. 2.1) for learning effective 

antibody representation (embeddings). In addition, we also intend to propose a proper data 

augmentation for antibody sequences and their respective structural data. 

 Contrastive learning has recently achieved good results to classify images in computer 

vision tasks [10, 11]. Using such self-supervised algorithms, the loss is designed to maximize 

the difference between positive examples and negative examples. In our study, specifically, 

positive examples could be regarded as antibodies that bind and neutralize to a specific 

pathogenic virus, while negative examples would be antibodies which do not bind to the 

specific antigen. We hypothesize that representation learned by contrastive learning using 

structural-based and sequence-based data can help in the classification of possible binders for 

specific antigens and learn good 3D/sequence representations for antigen-specificity tasks. 

 

 
 
Figure 2.1: Supervised vs self-supervised contrastive losses. Supervised contrastive learning 
considers different samples from the same class as positive examples [link] 
 
Our main objective during this work can be summarized as follows: 

• Generate a synthetic antibody structure dataset by using State-Of-The-Art (SOTA) deep 

learning-based antibody structure prediction networks. 

• Train a classifier via contrastive learning to identify if an antibody is a potential binder 

to a target antigen by using sequence-based and/or structure-based representations 

(similar to Fig 2.2). 

https://ai.googleblog.com/2021/06/extending-contrastive-learning-to.html


• Propose a novel data augmentation mechanism for antibody data to produce additional 

synthetic sequences/structures for learning better representations using contrastive 

learning algorithms. 

• Generate novel antigen-specific antibody candidates with traditional computational 

methods such as Rosetta Antibody Design (RAbD) [3] and deep learning-based 

generative methods. Evaluate the candidates in silico using the contrastive learning-

based classifier, and select the best ones for real wet-lab experiments to compute 

binding affinity, solubility and developability parameters. 

 

 
 

Figure 2.2: Cross entropy, self-supervised contrastive loss and supervised contrastive loss: The cross-
entropy loss (left) uses labels and a SoftMax loss to train a classifier; the self-supervised contrastive 
loss (middle) uses a contrastive loss and data augmentations to learn representations. The supervised 
contrastive loss (right) also learns representations using a contrastive loss, but uses label information 
to sample positives in addition to augmentations of the same image.  
 
 

  



3. Preprocessing & Datasets 
One of the important aspects of therapeutic antibody design is to collect antigen specific data 

that could be processed and filtered for efficient learning representations. As we aim to train a 

(self-)supervised contrastive classifier using both sequence and structure, the first step is to 

gather those sequence and structure data for antibodies that are confirmed to neutralize target 

antigens. In the next subsection, we detail how we are collecting the antibody sequences and 

structures to create a dataset and how we are inferring synthetic structures for antibodies that 

only contain sequence data using deep learning-based antibody structure prediction networks. 

 
Figure 3.1. Available sequence, (synthetic) structure, and developability data for antibodies [link] 

 

Structural Antibody Database (SAbDab) 
Structural antibody database [2] is an online resource containing all the publicly available 

antibody structures annotated and presented in a consistent fashion. The data are annotated with 

several properties including experimental information, gene details, correct heavy and light 

chain pairings, antigen details and, if available, antibody-antigen binding affinity. As in Fig. 

3.1, the user can retrieve the full set of structures, specific entries by specifying their Protein 

Data Bank (PDB) code or to create subsets based on search criteria [1]. Structures can be 

searched based on the experimental methods used to determine the structure, species of the 

antibody, antigen type, presence of affinity values in the annotation and presence of amino acid 

residues at specific sequence positions. 

https://pubmed.ncbi.nlm.nih.gov/35293269/#&gid=article-figures&pid=figure-2-uid-1
https://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/search/


 
 

Figure 3.2: SAbDab’s workflow. New structures from the PDB are weekly analyzed to find antibody 
chains. These structures are then annotated with a number of properties and stored in SAbDab. 
Users may access and select this data using a number of different criteria. [James Dunbar et al, 2013] 

 
Observed Antibody Space (OAS) 
The Observed Antibody Space (OAS) database was created in 2018 to offer clean, annotated, 

and translated repertoire data. Driven by increasing volume of data and the appearance of 

paired (VH/VL) sequence data during last 4 years, OAS became accessible via a web-server 

[1], with standardized search parameters and sequence-based search option, to provide 1.5 

billion unpaired sequences from 80 studies, including recent studies featuring SARS-CoV-2 

https://academic.oup.com/nar/article/42/D1/D1140/1044118
http://opig.stats.ox.ac.uk/webapps/oas/oas_paired


data, and 172, 723 paired sequencing data from five studies. Providing the nucleotides for the 

VH/VL chains, the database also contains additional sequence annotations, such as the 

antibodies junction sequence and whether it is a productive sequence during wet-lab 

experiments, allowing for a fast initial query of 1,000 antibody sequences similar to a given 

sequence of interest. 

 

 
 

Figure 3.3: Downloading from OAS. (a) The sequence search tab for unpaired sequences, with the 
search options filled for heavy chain sequences from SARS-CoV-2 infected patients (shown with red 
arrows). (b) The search result, with each data unit matching the search and a downloadable link 
containing the links for the relevant data units (with a red arrow). [Olsen et al, 2022, OAS] 
 
 
Antigen-specific repertoire  
 

 
 

Figure 3.4: Summary of Antibody Crystal Structures extracted from Protein Data Bank (PBD) which 
are based on Observed Antibody Space (OAS) sequences 
 

https://onlinelibrary.wiley.com/doi/full/10.1002/pro.4205
http://abybank.org/sacs/


Since many sequence features of public antibody responses to different foreign viruses can be 

observed in Observed Antibody Space (OAS) [1] and Structural Antibody Database (SAbDab) 

[2], we postulate that the dataset is sufficiently large for gathering available antigen-specific 

antibodies for training the model. The preprocessing stage includes 172,723 filtered paired 

sequences with appropriate target diseases and organisms, along with 6,118 antibody structures 

available in the SAbDab. Since it is important to identify different antigens for distinguishing 

antibodies during the model training, we aim to retrieve 6,273 unique SARS-CoV-2 antibodies 

from OAS [1], 5,547 unique Human Immunodeficiency Virus (HIV) antibodies, and 2,204 

unique influenza hemagglutinin (HA) antibodies from GenBank [22], with complete 

information for all six CDR sequences and germline expressions. Among different antigens, 

those were mainly chosen because of large number of published sequences and expressible 

antibodies binding to them. 

 
Figure 3.5: A dataset consisting of 6,273 SARS-CoV-2 targeting antibodies with full sequence & 
germline expressions 
 
 
Structural dataset augmentation  
We seek to train the model on as many immunoglobulin structures as possible. From the 

Structural Antibody Database (SAbDab) [2], we obtain 6,285 structures consisting of paired 

antibodies and single-chain nanobodies. Given the remarkable success of AlphaFold for 

modeling both protein monomers and complexes [21], we additionally explore the use of data 

augmentation to produce structures for training. 

 To produce a diverse set of structures for data augmentation, we clustered the paired 

and unpaired partitions of the Observed Antibody Space [1] at 40 % and 70 % sequence 

identity, respectively. This clustering results in 16,100 paired sequences and 26,900 unpaired 



sequences. We predict structures for both sets of sequences using the original AlphaFold model 

[21]. 

 

 
 

Figure 3.6: AlphaFold is used to create a synthetic structure dataset from natural antibody sequences 

 

 

 
Figure 3.7: AlphaFold-predicted antibody structures for SARS-CoV-2 Omicron (upper) & HIV (bottom)  



4. Approach & Methods 
After cleaning up redundant sequences, clustering down to more manageable population of 

immunoglobulins, and gathering synthetic crystal structures from antibody prediction networks 

[7, 8, 21], we explore a structure-based pretraining model for antibodies which efficiently 

incorporates both amino acid representations and structural information. Furthermore, we are 

going to utilize a contrastive learning framework with augmentation functions to discover 

substructures in different antibodies, serving as a crucial step for allowing self-supervised 

learning on antibody structures. 

Geometry-Aware Relational Graph Neural Network 
Considering antibody structures, the following model aims to learn encoded characteristics of 

spatial and chemical information. These representations must be invariant under 3D space of 

translations and rotations. To achieve this major requirement, we will first construct our 

antibody graph based on spatial features invariant under these transformations. 

Antibody graph construction 
We represent the structure of an antibody as a residue-level relational graph 𝒢𝒢 = (𝒱𝒱,ℰ,ℛ), in 

which 𝒱𝒱 and ℰ denote the set of nodes and edges respectively, and ℛ is the set of edge types. 

We use (𝑖𝑖, 𝑗𝑗, 𝑟𝑟) to denote the edge from node 𝑖𝑖 to node 𝑗𝑗 with type 𝑟𝑟, and 𝑛𝑛, 𝑚𝑚 denote the 

number of nodes and edges, respectively. In this project, every node of the antibody graph will 

indicate the residue’s alpha carbon with the 3D coordinates of all nodes 𝑥𝑥 ∈ ℝ𝑛𝑛×3. We are 

going to utilize 𝒇𝒇𝑖𝑖 and 𝒇𝒇(𝑖𝑖,𝑗𝑗,𝑟𝑟) to represent the feature for node 𝑖𝑖 and edge (𝑖𝑖, 𝑗𝑗, 𝑟𝑟), respectively. 

 Subsequently, 3 different types of directed edges will be added to these graphs: 

sequential, radius, and K-nearest neighbor edges. Among them, sequential edges will be further 

considered into 5 edge kinds dependent on the relative sequential distance 𝑑𝑑 ∈ {−2,−1, 0, 1, 2} 

between two end nodes, in which we will connect sequential edges only between the nodes 

within the sequential distance 𝑑𝑑 = 2 . Those edge types will reflect distinctive geometric 

characteristics, where all combined result in a comprehensive featurization of antibodies.  



 

Figure 4.1: 7BWJ – crystal structure of SARS-COV-2 antibody from Protein Data Bank 

 

Relational graph convolutional layer 
Based on the protein graph construction from the previous section, we will use a Graph Neural 

Network (GNN) to obtain per-residue and whole-protein representations. One baseline 

example of GNNs is the Graph Convolution Networks (GCN) [23], where messages are 

computed by multiplying node features with a convolutional kernel matrix shared among all 

edges. In order to increase the model capacity in protein modeling, Intrinsic-Extrinsic 

Convolution (IEConv) [24] introduced a learnable kernel function on edge features. With this 

approach, 𝑚𝑚 different kernel matrices would be applied on different edges, which results in a 

good performance but induces high memory costs. 

 To balance model capacity and memory cost, we will utilize a relational graph 

convolutional neural network [25] to learn graph representations, in which a convolutional 

kernel matrix is shared within each edge type and there are |ℛ| different kernel matrices 

overall. Mathematically, the relational graph convolutional layer used in this work will be 

defined as 

𝒉𝒉𝑖𝑖
(0) = 𝒇𝒇𝑖𝑖 ,  𝑢𝑢𝑖𝑖

(𝑙𝑙) = 𝜎𝜎�BN��  
𝑟𝑟∈ℛ

 𝑊𝑊𝑟𝑟 �  
𝑗𝑗∈𝒩𝒩𝑟𝑟(𝑖𝑖)

 ℎ𝑗𝑗
(𝑙𝑙−1)�� ,  𝒉𝒉𝑖𝑖

(𝑙𝑙) = ℎ𝑖𝑖
(𝑙𝑙−1) + 𝑢𝑢𝑖𝑖

(𝑙𝑙) 

More specifically, we will use node features 𝑓𝑓𝑖𝑖  as initial representations. Then, taking into 

account the node representation of ℎ𝑖𝑖
(𝑙𝑙) for node 𝑖𝑖 at the 𝑙𝑙-th layer, we will compute updated 

node representation 𝑢𝑢𝑖𝑖
(𝑙𝑙)  by aggregating neighboring nodes’ features from 𝒩𝒩𝑟𝑟(𝑖𝑖), in which 



𝒩𝒩𝑟𝑟(𝑖𝑖) = {𝑗𝑗 ∈ 𝒱𝒱 ∣ (𝑗𝑗, 𝑖𝑖, 𝑟𝑟) ∈ ℰ} indicates the neighborhood of node 𝑖𝑖 with the edge type 𝑟𝑟, and 

𝑾𝑾𝑟𝑟 represents the learnable convolutional kernel matrix for edge type 𝑟𝑟. For this relational 

graph construction, BN stands for a batch normalization layer and we will use a ReLU function 

as the activation 𝜎𝜎(⋅). At the end, we will update ℎ𝑖𝑖
(𝑙𝑙) with 𝑢𝑢𝑖𝑖

(𝑙𝑙) and add a residual connection 

from the last layer. 

 

Edge Message Passing Layer 

Reviewing the literature of molecular representation learning, we can observe the major 

importance of geometric encoders to explicitly modeling interactions between edges. For 

instance, Directional Message Passing Neural Network (DimeNet) [26] considers a 2D-

spherical Fourier-Bessel basis function to indicate angles between 2 edges and pass messages 

between edges. AlphaFold2 [27] leverages the triangle attention designed for transformers to 

model pair representations. Encouraged from this literature, in this project, we will use a variant 

of Geometry-Aware Relational Graph Neural Network which is enhanced with an edge 

message passing layer. The edge message passing layer can be considered as a sparse version 

of the pair representation update designated for GNNs (Graph Neural Networks). The main 

goal is to model the dependency between different interactions of a residue with other 

sequentially/spatially adjacent residues. 

 Mathematically, we will first build a relational graph 𝒢𝒢′ = (𝒱𝒱′,ℰ′,ℛ′) among edges, 

mostly inspired from the old literature [28]. Every node in the graph 𝒢𝒢′ corresponds to the edge 

of the original graph 𝒢𝒢. 𝒢𝒢′ links edge (𝑖𝑖, 𝑗𝑗, 𝑟𝑟1) in the original graph to edge (𝑤𝑤,𝑘𝑘, 𝑟𝑟2) if and only 

if 𝑗𝑗 = 𝑤𝑤 and 𝑖𝑖 ≠ 𝑘𝑘. The specific kind of this edge is obtained by the angle between (𝑖𝑖, 𝑗𝑗, 𝑟𝑟1) 

and (𝑤𝑤, 𝑘𝑘, 𝑟𝑟2). To make computations easier, we are going to divide the range [0,𝜋𝜋] into eight 

bins and utilize the bin’s index as the edge type. 

 Then, we will apply a similar relational graph convolutional network on the graph 𝒢𝒢′ 

to determine the message function for every edge. Specifically, the edge message passing layer 

for this model will be defined as follows: 

𝒎𝒎(𝑖𝑖,𝑗𝑗,𝑟𝑟1)
(0) = 𝒇𝒇(𝑖𝑖,𝑗𝑗,𝑟𝑟1),  𝒎𝒎(𝑖𝑖,𝑗𝑗,𝑟𝑟1)

(𝑙𝑙) = 𝜎𝜎�BN��  
𝑟𝑟∈ℛ′

 𝑾𝑾𝑟𝑟
′ �  

(𝑤𝑤,𝑘𝑘,𝑟𝑟2)∈𝒩𝒩𝑟𝑟′�(𝑖𝑖,𝑗𝑗,𝑟𝑟1)�

 𝒎𝒎(𝑤𝑤,𝑘𝑘,𝑟𝑟2)
(𝑙𝑙−1) �� 



 In this case, we denote 𝑚𝑚(𝑖𝑖,𝑗𝑗,𝑟𝑟1)
(𝑙𝑙)  to be the message function for edge (𝑖𝑖, 𝑗𝑗, 𝑟𝑟1) in the 𝑙𝑙-th 

layer. Similar to the previous graph convolution equation, the message function for edge 

(𝑖𝑖, 𝑗𝑗, 𝑟𝑟1)  will be updated by combining neighbor features 𝒩𝒩𝑟𝑟
′�(𝑖𝑖, 𝑗𝑗, 𝑟𝑟1)� , in which 

𝒩𝒩𝑟𝑟
′�(𝑖𝑖, 𝑗𝑗, 𝑟𝑟1)� = �(𝑤𝑤,𝑘𝑘, 𝑟𝑟2) ∈ 𝒱𝒱′ ∣ �(𝑤𝑤, 𝑘𝑘, 𝑟𝑟2), (𝑖𝑖, 𝑗𝑗, 𝑟𝑟1), 𝑟𝑟� ∈ ℰ′� indicates the set of incoming 

edges of (𝑖𝑖, 𝑗𝑗, 𝑟𝑟1) with relation type 𝑟𝑟 in the graph 𝒢𝒢′. 

 At the end, we will replace the aggregation function from graph convolution equation 

in the original graph with the following (referenced to previous chapter): 

𝑢𝑢𝑖𝑖
(𝑙𝑙) = 𝜎𝜎�BN ��  

𝑟𝑟∈ℛ

 𝑊𝑊𝑟𝑟 �  
𝑗𝑗∈𝒩𝒩𝑟𝑟(𝑖𝑖)

 �ℎ𝑗𝑗
(𝑙𝑙−1) + FC �𝒎𝒎(𝑗𝑗,𝑖𝑖,𝑟𝑟)

(𝑙𝑙) ��� 

where FC(⋅) indicates a linear transformation upon the message function. 

  



5. Main results 
In this section, we will first explore how to boost antibody representation learning via self-

supervised pretraining on a huge number of unlabeled antibody structures, and then present the 

antigen-specificity results from those representations.  

 

Self-supervised pretraining methods 
Even though self-supervised pretraining has proven to be effective in multiple fields, 

application of those methods to antibody representation learning is not easy because of the 

difficulty of incorporating both biochemical and spatial characteristics in antibody structures. 

In order to approach this challenge, we use a multi-view contrastive learning method with 

augmentation functions to discover correlated co-occurrence of antibody sub-structures and 

align their representations in the latent space. 

 

 
Figure 5.1: Multiview Contrastive Learning: For each antibody, we first construct the residue graph 𝒢𝒢 
based on the structural information. Then, two sub-views 𝒢𝒢𝑥𝑥 and 𝒢𝒢𝑦𝑦 of the antibody are generated by 
randomly choosing the sampling scheme and noise function. For 𝒢𝒢𝑥𝑥, we extract a subsequence and 
then perform random edge masking where dash lines represent masked edges. For 𝒢𝒢𝑦𝑦, we apply a 
subspace cropping and then keep the subspace graph 𝒢𝒢𝑝𝑝,𝑑𝑑

(space)  intact. At the end, a contrastive learning 
loss is optimized to maximize the similarity between 𝒢𝒢𝑥𝑥 and 𝒢𝒢𝑦𝑦 in the latent space while minimizing its 
similarity with a negative sample 𝒢𝒢′ 

 

 

 



Multiview contrastive learning 
Inspired by recent contrastive learning methods [29, 30] and the evolutional history of antibody 

substructures within the same folded motif [31], we will explore a framework that aims to 

preserve the similarity between those correlated substructures before and after mapping to a 

low-dimensional latent space. Particularly, considering a similarity measurement that is applied 

in the latent space, biologically-correlated antibody substructures will be embedded close to 

each other, whereas the unrelated ones will be mapped far apart from each other. Figure 5.1 

represents the high-level idea of this approach. 

 

Construction of antibody substructures 
Considering an antibody graph 𝒢𝒢, we will apply 2 distinctive sampling schemes for reflecting 

substructure views. The first one is subsequence cropping, which randomly samples a left 

residue 𝑙𝑙  and a right residue 𝑟𝑟  and aggregates all amino acid residues from 𝑙𝑙  to 𝑟𝑟 . This 

sampling scheme aims to capture antibody domains, consecutive subsequences that reappear 

in different antibodies along with their functionalities [32]. But, just sampling antibody 

subsequences will not fully capture the 3D structural representation from antibody data. Thus, 

we further apply a subspace cropping scheme that explores spatially structurally correlated 

motifs in antibodies. We will randomly sample an amino acid residue 𝑝𝑝 as the center and 

consider all residues within a Euclidean ball with a predefined radius 𝑑𝑑. For the two-sampling 

schematic, we will take the corresponding subgraphs from the antibody residue graph 𝒢𝒢 =

(𝒱𝒱,ℰ,ℛ) . Particularly, the subsequence graph 𝒢𝒢𝑙𝑙,𝑟𝑟
(seq)  and the subspace graph 𝒢𝒢𝑝𝑝,𝑑𝑑

(space)  are 

defined as follows: 

𝒱𝒱𝑙𝑙,𝑟𝑟
(seq) = {𝑖𝑖 ∣ 𝑖𝑖 ∈ 𝒱𝒱, 𝑙𝑙 ≤ 𝑖𝑖 ≤ 𝑟𝑟},  ℰ𝑙𝑙,𝑟𝑟

(seq ) = �(𝑖𝑖, 𝑗𝑗, 𝑟𝑟) ∣ (𝑖𝑖, 𝑗𝑗, 𝑟𝑟) ∈ ℰ, 𝑖𝑖 ∈ 𝒱𝒱𝑙𝑙,𝑟𝑟
(seq ), 𝑗𝑗 ∈ 𝒱𝒱𝑙𝑙,𝑟𝑟

(seq )�,

𝒱𝒱𝑝𝑝,𝑑𝑑
(space) = �𝑖𝑖 ∣ 𝑖𝑖 ∈ 𝒱𝒱, ∥∥𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑝𝑝∥∥2 ≤ 𝑑𝑑� ,  ℰ𝑝𝑝,𝑑𝑑

(space) = �(𝑖𝑖, 𝑗𝑗, 𝑟𝑟) ∣ (𝑖𝑖, 𝑗𝑗, 𝑟𝑟) ∈ ℰ, 𝑖𝑖 ∈ 𝒱𝒱𝑝𝑝,𝑑𝑑
(space ), 𝑗𝑗 ∈ 𝒱𝒱𝑝𝑝,𝑑𝑑

(space )�,

 where 𝒢𝒢𝑙𝑙,𝑟𝑟
(seq) = �𝒱𝒱𝑙𝑙,𝑟𝑟

(seq) ,ℰ𝑙𝑙,𝑟𝑟
(seq) ,ℛ� and 𝒢𝒢𝑝𝑝,𝑑𝑑

(space) = �𝒱𝒱𝑝𝑝,𝑑𝑑
(space ),ℰ𝑝𝑝,𝑑𝑑

(space) )ℛ�

 

 Referencing the usual practice of self-supervised learning [29], once the 

substructures are sampled, we will apply a noise function to construct more diverse views 

which in turn, will improve the learned representations. In this project, we are going to use 2 

noise functions: “Identity” which applies no transformation at all, and “Random edge 

masking” which randomly masks every edge with a probability 𝑝𝑝 = 0.20 



Contrastive learning  

We use a Simple Framework for Contrastive Learning of Visual Representations (SimCLR) 

[29] to optimize a contrastive loss function and in turn, maximize the mutual information 

between biologically correlated views. Specifically, we sample views 𝒢𝒢𝑥𝑥  and 𝒢𝒢𝑦𝑦  for every 

antibody 𝒢𝒢, first by randomly choosing one sampling scheme for extracting substructures and 

then, randomly selecting one of the two noise functions (i.e. “Identity” or “Random edge 

masking”) with equal probability. The graph representations 𝒉𝒉𝑥𝑥 and 𝒉𝒉𝑦𝑦 of two views will be 

obtained by applying the structure-based encoder we described in “Approach & Methods”. 

Then, 2-layer MLP (Multi-Layer Perceptron) projection head is used to map the representations 

to a lower-dimensional space, indicated as 𝒛𝒛𝑥𝑥  and 𝒛𝒛𝑦𝑦 . At the end, an InfoNCE (Noise-

Contrastive Estimation) loss function is defined by differentiating views from the same or 

different antibodies using their similarities [33]. Specifically, for a positive pair 𝑥𝑥 and 𝑦𝑦, we 

treat views from other antibodies in the same mini-batch as negative pairs. Mathematically, the 

loss function for a positive pair of views 𝑥𝑥 and 𝑦𝑦 will be written as: 

ℒ𝑥𝑥,𝑦𝑦 = −log 
exp �sim �𝒛𝒛𝑥𝑥 , 𝒛𝒛𝑦𝑦�/𝜏𝜏�

∑  2𝐵𝐵
𝑘𝑘=1  𝟙𝟙[𝑘𝑘≠𝑥𝑥]exp �sim �𝒛𝒛𝑦𝑦, 𝒛𝒛𝑘𝑘�/𝜏𝜏�

 

Here, 𝐵𝐵 denotes the batch size, 𝜏𝜏 indicates the temp1e2qserature, 𝟙𝟙[𝑘𝑘≠𝑥𝑥] ∈ {0,1} is an indicator 

function that is equal to 1 if and only if 𝑘𝑘 ≠ 𝑥𝑥. The similarity function sim (𝒖𝒖,𝒗𝒗) is obtained 

by the cosine similarity between 𝒖𝒖 and 𝒗𝒗. 

 

Evaluation metrics  

Now, we are going to discuss the evaluation metrics for antigen-specificity prediction. As a 

revision, our goal is to answer the following question: whether an antibody binds to SARS-

CoV-2, HIV, or Hemagglutinin Influenza (HA), which can be regarded as a multi-class 

binary classification task. 

The 1st metric, antibody-centric maximum F-score 𝐹𝐹max, is obtained by first computing the 

precision and recall for each antibody and then taking the average score over all antibodies. 

Mathematically, for a given target antibody 𝑖𝑖 and a decision threshold 𝑡𝑡 ∈ [0,1], the precision 

and recall will be evaluated as follows: 



precision𝑖𝑖 (𝑡𝑡) =
∑  𝑓𝑓  𝟙𝟙[𝑓𝑓 ∈ 𝑃𝑃𝑖𝑖(𝑡𝑡) ∩ 𝑇𝑇𝑖𝑖]
∑  𝑓𝑓  𝟙𝟙[𝑓𝑓 ∈ 𝑃𝑃𝑖𝑖(𝑡𝑡)] , 

and 

recall𝑖𝑖 (𝑡𝑡) =
∑  𝑓𝑓  𝟙𝟙[𝑓𝑓 ∈ 𝑃𝑃𝑖𝑖(𝑡𝑡) ∩ 𝑇𝑇𝑖𝑖]

∑  𝑓𝑓  𝟙𝟙[𝑓𝑓 ∈ 𝑇𝑇𝑖𝑖]
, 

in which 𝑓𝑓 is a function for the antigen-specificity, 𝑇𝑇𝑖𝑖 is a set of experimentally determined 
antigen terms for antibody 𝑖𝑖,𝑃𝑃𝑖𝑖(𝑡𝑡) denotes the set of predicted terms for antibody 𝑖𝑖 with 
scores ≥ 𝑡𝑡 and 𝟙𝟙[⋅] ∈ {0,1} is an indicator function which is equal to 0 iff the condition is 
false. 

Subsequently, the average precision and recall over all antibodies at threshold 𝑡𝑡 will be as: 

precision (𝑡𝑡) =
1

𝑀𝑀(𝑡𝑡)
� 
𝑖𝑖

precision𝑖𝑖 (𝑡𝑡) 

and 

recall (𝑡𝑡) =
1
𝑁𝑁
�  
𝑖𝑖

recall𝑖𝑖 (𝑡𝑡), 

in which 𝑁𝑁 indicates the number of antibodies and 𝑀𝑀(𝑡𝑡) represents the number of antibodies 
on which at least 1 prediction was made above threshold 𝑡𝑡; in other words, |𝑃𝑃𝑖𝑖(𝑡𝑡)| > 0. 

Aggregating those 2 evaluation measurements, the maximum F-score will be denoted as the 
maximum value of F-measure over all thresholds. In other words, 

Fmax = max
𝑡𝑡
 �

2 ∗ precision(𝑡𝑡) ∗  recall (𝑡𝑡)
precision (𝑡𝑡) + recall (𝑡𝑡)

� 

The 2nd metric, pair-centric Area Under Precision-Recall Curve AUPRCpair , is obtained as the 
average precision scores for all antibody-antigen pairs, which is actually the micro average 
precision score for multiple binary classification. 

 

 

 

 

 

 

 



Experimental results  

 

 
 

 



 
Geometry-Aware Relational Graph Neural Network 

 
Geometry-Aware Relational Graph Neural Network + Edge Message Passing Layer 

 
As seen from the above results, both of the explored methods indicate considerably good 

results for Fmax measurement, in which binary cross entropy loss for training shows the 

desired decreasing curve throughout the 80 epochs. Moreover, Area Under Precision-Recall 

Curve (AUPRC), and Area Under Receiver Operating Characteristic (AUROC) reveal the 

fluctuating curves for the validation dataset, along with accurate evaluation metrics during 

their final epochs.  

 

Ablation studies 
To analyze the contribution of different subcomponents in the explored methods, we will 

perform ablation studies on the antigen-specificity task. The results are shown in Table 5.1. 

 

  

 

 

 

 

 

Method 𝐅𝐅max  

Multiview contrastive learning 𝟎𝟎.𝟖𝟖𝟖𝟖𝟖𝟖 

- subsequence + identity 0. 851 

- subspace+ identity 𝟎𝟎.𝟖𝟖𝟖𝟖𝟖𝟖 

- subsequence + random edge masking 0. 858 

- subspace + random edge masking 𝟎𝟎.𝟖𝟖𝟖𝟖𝟎𝟎 

Table 5.1: Ablation studies on antibody-antigen datasets  



6. Discussion 

Different augmentations in Multiview contrast 
We explore the contribution of every augmentation approach introduced in the Multiview 

Contrast method (previous page). Instead of randomly sampling cropping and noise functions, 

we will pretrain our model with 4 deterministic combinations of augmentations, 

correspondingly. As indicated in Table 5.1, all the four combinations yield good results, which 

suggests arbitrary combinations of the introduced cropping and noise schemes can yield 

informative partial views of antibodies. Moreover, we can also see that the results of Subspace 

Cropping are usually better than those of Subsequence Cropping with different noise functions, 

concluding that it is an efficient method to utilize 3D information to extract meaningful 

antibody substructures. 

Protein latent space visualization 
In order to evaluate the quality of the antibody embeddings learned by the pretraining method, 

we will visualize the latent space of the model pretrained by Multiview Contrast. Particularly, 

we will utilize the pretrained model to extract the embeddings of all the proteins from Alpha-

Fold database, and these embeddings will be mapped to the 2-dimensional space by UMAP 

[34] for visualization. Referring to [35], we will highlight the 20 most common superfamilies 

within the database by distinct colors. The visualization results are indicated in Fig. 6.1. We 

can vividly observe that the pretrained model groups the same superfamily proteins together 

and divide the ones from different superfamilies apart. In fact, it succeeds in clearly separating 

three superfamilies, which are represented as Protein kinase superfamily, Cytochrome P450 

family, and TRAFAC class myosin-kinesin ATPase superfamily.  



 
 

Figure 6.1: Latent space visualization of Multiview contrastive learning on the protein database 
 

 

  



7. Future Research Plan & Proposal 

Once we identify the epitope-paratope level interactions, binding sites, and neutralization 

activities available from antibody datasets, we can start experimenting with the benchmark 

architectures for contrastive representations based upon SimCSE [10] and SimCLR [11], along 

with appropriate graph-level embeddings for pathogenic antigens. Further data augmentation 

techniques for amino acid level representations may also be applied to improve the benchmark 

results of previous methods and efficiently create the massive antibody repertoire targeting new 

pathogens. 

 In recap, our summary for future work and ablation studies in this project can be 

summarized as follows: 

• Obtain 3D surface/mesh-level representations of antibody structures using Geometric 

Deep Learning, including in silico synthetic datasets 

• Propose a novel data augmentation mechanism for antibody data to produce additional 

synthetic structures for learning better representations using SimCSE and SimCLR 

algorithms. 
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