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Abstract

Learning effective antibody representations is fundamental in multiple biological tasks,
specifically for predicting antigen specificity to target pathogenic viruses. Current
methodologies usually pretrain language models on a large number of unlabeled amino
acid sequences of antibodies and then hyper-tune the models with some labeled data in
downstream applications. Even though the sequence-based methods have proven to be
effective in multiple realms, the power of pretraining on known antibody structures,
which are available in exponentially small magnitude, has not been explored for antigen

specificity predictions.

In this project, we will explore a simple yet effective structure-based encoder for
antibody representation learning to embed the geometric features of antibodies
according to their 3D structural information. We pretrain the antibody graph encoder
by leveraging Multiview contrastive learning and evaluate the antigen-specificity task
for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Hemagglutinin
Influenza (HA), and Human Immunodeficiency Virus (HIV). Experimental results on
those viruses indicate comparatively high values for precision/recall/F1-score and

reveal qualitatively accurate visualization of latent space for 20 protein families.



1. Research Background

In this section, we explore the biological background of our research, its related previous works

on traditional computational methods, and recent approaches applied with Deep Learning.

Background

The adaptive immune system of vertebrates is capable of mounting robust responses to a broad
range of potential pathogens. Critical to this flexibility are antibodies, which are specialized to
recognize a diverse set of molecular patterns with high affinity and specificity. The overall role
of an antibody is to bind to an antigen, e.g., a virus, present it to the immune system, and
stimulate an immune response. This natural role in the defense against pathogens, e.g. SARS-
COV-2, Influenza, makes antibodies an increasingly popular choice for the development of
new therapeutics.

An antibody consists of a heavy chain and a light chain, each composed of a variable
domain (VH/VL) and a constant domain, as shown in Fig. 1.1. The variable domain is further
divided into a framework region and three complementarity-determining regions (CDRs). The
three CDRs on the heavy chain are denoted as CDR-H1, CDR-H2, CDRH3, each occupying a
contiguous subsequence in the framework region sequence. As the most variable part of an
antibody, CDRs are the main determinants of binding and neutralization. Following current
state-of-art approaches in computational biology [4-9], we formulate antibody design as a CDR

generation problem, conditioned on the framework region (Fab) sequence.
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Figure 1.1: Structures of an antibody and of common antibody fragments. An antibody structure is
shown on the left with the heavy (H) and light (L) chains in blue and green, respectively. CDRs
containing the paratopes are colored in red, and the heavy and light variable domains (VH and VL) are
labelled. The antigen-binding fragment (Fab) region is responsible for recognizing the target, while the
crystallizable fragment (Fc) region for immune function and lysosome escape. The three CDR loops
are highlighted in red on VH domain.



Currently, monoclonal antibodies make up a rapidly growing segment of the global
pharmaceutical market. The global therapeutic monoclonal antibody market was valued at
approximately $150 billion in 2019 and is expected to generate revenue of $300 billion by the
end of 2025 [13]. However, rational design of antibody-antigen interactions is hindered by
reliance on experimental methods such as crystallography, NMR, and cryo-EM, which are low

throughput and requires significant investments of time and resources that may fail (Fig. 1.2).
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Figure 1.2; Rational design of antibody-antigen interactions



Traditional Methods

In general, methods for computational antibody design roughly fall into two categories. The
first class is based on energy function optimization, which uses Markov Chain Monte Carlo
simulation to iteratively modify an antibody sequence and its structure to reach a local
minimum energy for the antibody structure and the interface between antibody and antigen
(Fig. 1.3). Similar approaches are also used in protein design [3, 4]. However, these physics-
based methods are computationally expensive, in which the designed sequence can fold into a
structure different from the designed structure, and our antigen-conditioned objective can be

more complicated than evaluating only physics-based binding energy models [5, 9].
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Figure 1.3: Energy Optimization of Protein Sequences. [Christoffer Norn et al. 2021]

Deep Learning-based Methods

The second methodology is based on generative models. For antibodies, they are mostly
sequence-based [15, 16], whereas regarding the proteins, authors from [17, 18, 19] further
developed models conditioned on a backbone structure or protein folding in general. Since the
best CDR structures are often unknown for new pathogens, most approaches codesign
sequences and structures for specific properties of targeted viruses, mimicking autoregressive
models for graph generation.

In fact, the application of Natural Language Processing (NLP) algorithms, such as
Transformers [20], and Graph Neural Networks (GNN) have been proven to be efficient for
designing de-novo antibody sequences and structures [6, 7, 8, 9]. Particularly, due to the limited
antibody structures available in the structural antibody database [1, 2], most of the recent

research studies have focused on antibody sequence generation for paired immunoglobulin


https://www.pnas.org/doi/10.1073/pnas.2017228118

sequences using Bidirectional Encoder Representations from Transformers (BERT) models [7,

8, 12] and (self-)supervised learning algorithms [6, 9]. However, there has been a lack of

studies that have investigated both structure based and sequence-level representations to filter

positive candidates from an antibody dataset which may possibly bind and neutralize specific

pathogenic viruses. Figure 1.4 illustrates the overall landscape of Al-based antibody design in

terms of Antibody Structure Prediction, Language Modeling, Generative Models, and Binding

Predictions. As indicated in the specificity task (i.e. blue), most of such prediction models

condition on antigen’s epitope structures and utilize simple Convolutional Neural Network

(CNN) and/or Graph Neural Networks (GNN) to capture antibody-antigen interactions.
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Figure 1.4: Al-based antibody development using language modeling and generative models



2. Research Purpose

In this work, our aim is to use contrastive learning methods (Fig. 2.1) for learning effective
antibody representation (embeddings). In addition, we also intend to propose a proper data
augmentation for antibody sequences and their respective structural data.

Contrastive learning has recently achieved good results to classify images in computer
vision tasks [10, 11]. Using such self-supervised algorithms, the loss is designed to maximize
the difference between positive examples and negative examples. In our study, specifically,
positive examples could be regarded as antibodies that bind and neutralize to a specific
pathogenic virus, while negative examples would be antibodies which do not bind to the
specific antigen. We hypothesize that representation learned by contrastive learning using
structural-based and sequence-based data can help in the classification of possible binders for

specific antigens and learn good 3D/sequence representations for antigen-specificity tasks.
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Figure 2.1: Supervised vs self-supervised contrastive losses. Supervised contrastive learning
considers different samples from the same class as positive examples [link]

Our main objective during this work can be summarized as follows:
¢ (Generate a synthetic antibody structure dataset by using State-Of-The-Art (SOTA) deep
learning-based antibody structure prediction networks.
e Train a classifier via contrastive learning to identify if an antibody is a potential binder
to a target antigen by using sequence-based and/or structure-based representations

(similar to Fig 2.2).


https://ai.googleblog.com/2021/06/extending-contrastive-learning-to.html

e Propose a novel data augmentation mechanism for antibody data to produce additional
synthetic sequences/structures for learning better representations using contrastive
learning algorithms.

e Generate novel antigen-specific antibody candidates with traditional computational
methods such as Rosetta Antibody Design (RAbD) [3] and deep learning-based
generative methods. Evaluate the candidates in silico using the contrastive learning-
based classifier, and select the best ones for real wet-lab experiments to compute

binding affinity, solubility and developability parameters.
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Figure 2.2: Cross entropy, self-supervised contrastive loss and supervised contrastive loss: The cross-
entropy loss (left) uses labels and a SoftMax loss to train a classifier; the self-supervised contrastive
loss (middle) uses a contrastive loss and data augmentations to learn representations. The supervised
contrastive loss (right) also learns representations using a contrastive loss, but uses label information
to sample positives in addition to augmentations of the same image.



3. Preprocessing & Datasets

One of the important aspects of therapeutic antibody design is to collect antigen specific data
that could be processed and filtered for efficient learning representations. As we aim to train a
(self-)supervised contrastive classifier using both sequence and structure, the first step is to
gather those sequence and structure data for antibodies that are confirmed to neutralize target
antigens. In the next subsection, we detail how we are collecting the antibody sequences and
structures to create a dataset and how we are inferring synthetic structures for antibodies that

only contain sequence data using deep learning-based antibody structure prediction networks.
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Figure 3.1. Available sequence, (synthetic) structure, and developability data for antibodies [link]

Structural Antibody Database (SAbDab)

Structural antibody database [2] is an online resource containing all the publicly available
antibody structures annotated and presented in a consistent fashion. The data are annotated with
several properties including experimental information, gene details, correct heavy and light
chain pairings, antigen details and, if available, antibody-antigen binding affinity. As in Fig.
3.1, the user can retrieve the full set of structures, specific entries by specifying their Protein
Data Bank (PDB) code or to create subsets based on search criteria [1]. Structures can be
searched based on the experimental methods used to determine the structure, species of the
antibody, antigen type, presence of affinity values in the annotation and presence of amino acid

residues at specific sequence positions.
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Figure 3.2: SAbDab’s workflow. New structures from the PDB are weekly analyzed to find antibody
chains. These structures are then annotated with a number of properties and stored in SAbDab.
Users may access and select this data using a number of different criteria. [James Dunbar et al, 2013]

Observed Antibody Space (OAS)
The Observed Antibody Space (OAS) database was created in 2018 to offer clean, annotated,

and translated repertoire data. Driven by increasing volume of data and the appearance of
paired (VH/VL) sequence data during last 4 years, OAS became accessible via a web-server
[1], with standardized search parameters and sequence-based search option, to provide 1.5

billion unpaired sequences from 80 studies, including recent studies featuring SARS-CoV-2


https://academic.oup.com/nar/article/42/D1/D1140/1044118
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data, and 172, 723 paired sequencing data from five studies. Providing the nucleotides for the
VH/VL chains, the database also contains additional sequence annotations, such as the
antibodies junction sequence and whether it is a productive sequence during wet-lab
experiments, allowing for a fast initial query of 1,000 antibody sequences similar to a given

sequence of interest.
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Figure 3.3: Downloading from OAS. (a) The sequence search tab for unpaired sequences, with the
search options filled for heavy chain sequences from SARS-CoV-2 infected patients (shown with red
arrows). (b) The search result, with each data unit matching the search and a downloadable link
containing the links for the relevant data units (with a red arrow). [Olsen et al, 2022, OAS]
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Since many sequence features of public antibody responses to different foreign viruses can be
observed in Observed Antibody Space (OAS) [1] and Structural Antibody Database (SAbDab)
[2], we postulate that the dataset is sufficiently large for gathering available antigen-specific
antibodies for training the model. The preprocessing stage includes 172,723 filtered paired
sequences with appropriate target diseases and organisms, along with 6,118 antibody structures
available in the SAbDab. Since it is important to identify different antigens for distinguishing
antibodies during the model training, we aim to retrieve 6,273 unique SARS-CoV-2 antibodies
from OAS [1], 5,547 unique Human Immunodeficiency Virus (HIV) antibodies, and 2,204
unique influenza hemagglutinin (HA) antibodies from GenBank [22], with complete
information for all six CDR sequences and germline expressions. Among different antigens,
those were mainly chosen because of large number of published sequences and expressible

antibodies binding to them.
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Figure 3.5: A dataset consisting of 6,273 SARS-CoV-2 targeting antibodies with full sequence &
germline expressions

Structural dataset augmentation
We seek to train the model on as many immunoglobulin structures as possible. From the
Structural Antibody Database (SAbDab) [2], we obtain 6,285 structures consisting of paired
antibodies and single-chain nanobodies. Given the remarkable success of AlphaFold for
modeling both protein monomers and complexes [21], we additionally explore the use of data
augmentation to produce structures for training.

To produce a diverse set of structures for data augmentation, we clustered the paired
and unpaired partitions of the Observed Antibody Space [1] at 40 % and 70 % sequence

identity, respectively. This clustering results in 16,100 paired sequences and 26,900 unpaired



sequences. We predict structures for both sets of sequences using the original AlphaFold model

[21].
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Figure 3.6: AlphaFold is used to create a synthetic structure dataset from natural antibody sequences

Figure 3.7: AlphaFold-predicted antibody structures for SARS-CoV-2 Omicron (upper) & HIV (bottom)



4. Approach & Methods

After cleaning up redundant sequences, clustering down to more manageable population of
immunoglobulins, and gathering synthetic crystal structures from antibody prediction networks
[7, 8, 21], we explore a structure-based pretraining model for antibodies which efficiently
incorporates both amino acid representations and structural information. Furthermore, we are
going to utilize a contrastive learning framework with augmentation functions to discover
substructures in different antibodies, serving as a crucial step for allowing self-supervised

learning on antibody structures.

Geometry-Aware Relational Graph Neural Network

Considering antibody structures, the following model aims to learn encoded characteristics of
spatial and chemical information. These representations must be invariant under 3D space of
translations and rotations. To achieve this major requirement, we will first construct our

antibody graph based on spatial features invariant under these transformations.

Antibody graph construction

We represent the structure of an antibody as a residue-level relational graph G = (V, £, R), in
which V and € denote the set of nodes and edges respectively, and R is the set of edge types.
We use (i,j,7) to denote the edge from node i to node j with type r, and n, m denote the
number of nodes and edges, respectively. In this project, every node of the antibody graph will
indicate the residue’s alpha carbon with the 3D coordinates of all nodes x € R™ 3. We are
going to utilize f; and f; ;- to represent the feature for node i and edge (i, j, ), respectively.

Subsequently, 3 different types of directed edges will be added to these graphs:
sequential, radius, and K-nearest neighbor edges. Among them, sequential edges will be further
considered into 5 edge kinds dependent on the relative sequential distance d € {—2,—1,0, 1, 2}
between two end nodes, in which we will connect sequential edges only between the nodes
within the sequential distance d = 2. Those edge types will reflect distinctive geometric

characteristics, where all combined result in a comprehensive featurization of antibodies.



Figure 4.1: 7BWJ — crystal structure of SARS-COV-2 antibody from Protein Data Bank

Relational graph convolutional layer

Based on the protein graph construction from the previous section, we will use a Graph Neural
Network (GNN) to obtain per-residue and whole-protein representations. One baseline
example of GNNs is the Graph Convolution Networks (GCN) [23], where messages are
computed by multiplying node features with a convolutional kernel matrix shared among all
edges. In order to increase the model capacity in protein modeling, Intrinsic-Extrinsic
Convolution (IEConv) [24] introduced a learnable kernel function on edge features. With this
approach, m different kernel matrices would be applied on different edges, which results in a

good performance but induces high memory costs.

To balance model capacity and memory cost, we will utilize a relational graph
convolutional neural network [25] to learn graph representations, in which a convolutional
kernel matrix is shared within each edge type and there are |R| different kernel matrices
overall. Mathematically, the relational graph convolutional layer used in this work will be

defined as

) _ O _ (1-1) @ _ -1 Q]
RO =fou® =o[ BN Y m > AV | A0 = a0 4
TER  JENN(D)

More specifically, we will use node features f; as initial representations. Then, taking into
account the node representation of hi(l) for node i at the [-th layer, we will compute updated

node representation ul@ by aggregating neighboring nodes’ features from WV, (i), in which



N.())={j €V I|(j,i,r) € E} indicates the neighborhood of node i with the edge type r, and
W.. represents the learnable convolutional kernel matrix for edge type r. For this relational

graph construction, BN stands for a batch normalization layer and we will use a ReLU function
as the activation o (). At the end, we will update hl@ with ui(l) and add a residual connection

from the last layer.

Edge Message Passing Layer

Reviewing the literature of molecular representation learning, we can observe the major
importance of geometric encoders to explicitly modeling interactions between edges. For
instance, Directional Message Passing Neural Network (DimeNet) [26] considers a 2D-
spherical Fourier-Bessel basis function to indicate angles between 2 edges and pass messages
between edges. AlphaFold2 [27] leverages the triangle attention designed for transformers to
model pair representations. Encouraged from this literature, in this project, we will use a variant
of Geometry-Aware Relational Graph Neural Network which is enhanced with an edge
message passing layer. The edge message passing layer can be considered as a sparse version
of the pair representation update designated for GNNs (Graph Neural Networks). The main
goal is to model the dependency between different interactions of a residue with other
sequentially/spatially adjacent residues.

Mathematically, we will first build a relational graph G’ = (V',E',R") among edges,
mostly inspired from the old literature [28]. Every node in the graph G’ corresponds to the edge
of the original graph G. G' links edge (i, j, 1) in the original graph to edge (w, k, 1) if and only
if j = wand i # k. The specific kind of this edge is obtained by the angle between (i, j, 1)
and (w, k, ,). To make computations easier, we are going to divide the range [0, 7] into eight
bins and utilize the bin’s index as the edge type.

Then, we will apply a similar relational graph convolutional network on the graph G’
to determine the message function for every edge. Specifically, the edge message passing layer

for this model will be defined as follows:

O o _ / (1=1)
My = Fajry My = 0| BN z Wy Z MHwirs)
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D

(ijry) © be the message function for edge (i, j, 77) in the [-th

In this case, we denote m
layer. Similar to the previous graph convolution equation, the message function for edge
(i,j,m;) will be updated by combining neighbor features N/ ((i,j, 1)) , in which
Nr’((i,j, rl)) = {(W, k,r,) €V'| ((W, k,7y),(i,J, rl),r) € 8’} indicates the set of incoming

edges of (i, j, ;) with relation type r in the graph G'.

At the end, we will replace the aggregation function from graph convolution equation

in the original graph with the following (referenced to previous chapter):

ui(l) = o| BN z W, z (hj{l—l) + FC (mg)lr)))

TER JENF(D)

where FC(+) indicates a linear transformation upon the message function.



5. Main results

In this section, we will first explore how to boost antibody representation learning via self-
supervised pretraining on a huge number of unlabeled antibody structures, and then present the

antigen-specificity results from those representations.

Self-supervised pretraining methods

Even though self-supervised pretraining has proven to be effective in multiple fields,
application of those methods to antibody representation learning is not easy because of the
difficulty of incorporating both biochemical and spatial characteristics in antibody structures.
In order to approach this challenge, we use a multi-view contrastive learning method with
augmentation functions to discover correlated co-occurrence of antibody sub-structures and

align their representations in the latent space.

Protein Structure
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Figure 5.1: Multiview Contrastive Learning: For each antibody, we first construct the residue graph G
based on the structural information. Then, two sub-views G, and G, of the antibody are generated by
randomly choosing the sampling scheme and noise function. For G,, we extract a subsequence and

then perform random edge masking where dash lines represent masked edges. For G,, we apply a
subspace cropping and then keep the subspace graph g(Space)
loss is optimized to maximize the similarity between G, and G,, in the latent space while minimizing its

similarity with a negative sample G’

intact. At the end, a contrastive learning



Multiview contrastive learning

Inspired by recent contrastive learning methods [29, 30] and the evolutional history of antibody
substructures within the same folded motif [31], we will explore a framework that aims to
preserve the similarity between those correlated substructures before and after mapping to a
low-dimensional latent space. Particularly, considering a similarity measurement that is applied
in the latent space, biologically-correlated antibody substructures will be embedded close to
each other, whereas the unrelated ones will be mapped far apart from each other. Figure 5.1

represents the high-level idea of this approach.

Construction of antibody substructures

Considering an antibody graph G, we will apply 2 distinctive sampling schemes for reflecting
substructure views. The first one is subsequence cropping, which randomly samples a left
residue [ and a right residue r and aggregates all amino acid residues from [ to r. This
sampling scheme aims to capture antibody domains, consecutive subsequences that reappear
in different antibodies along with their functionalities [32]. But, just sampling antibody
subsequences will not fully capture the 3D structural representation from antibody data. Thus,
we further apply a subspace cropping scheme that explores spatially structurally correlated
motifs in antibodies. We will randomly sample an amino acid residue p as the center and
consider all residues within a Euclidean ball with a predefined radius d. For the two-sampling

schematic, we will take the corresponding subgraphs from the antibody residue graph G =

(space)
p.d

(seq)
Lr

(V,E,R). Particularly, the subsequence graph G and the subspace graph G are

defined as follows:

VOV =lievi<i<r), €5V ={(j,") 1 (ij,7r) €EieVED, j e},

Lr
,Vzg’sdpace) = {i i eV, iixl- — xpiiz < d}, gés,lc)lace) — {(i,j, (1) EE i€ Vzg‘scllaace)’j € vzg,scrt)ace) )
(seq) _ (qy(seq) c(seq) (space) _ (qy(space) c(space))
where G7¥ = (V;7, €Y, R) and G, = (V5" €50’ R)

Referencing the usual practice of self-supervised learning [29], once the
substructures are sampled, we will apply a noise function to construct more diverse views
which in turn, will improve the learned representations. In this project, we are going to use 2
noise functions: “Identity” which applies no transformation at all, and “Random edge

masking” which randomly masks every edge with a probability p = 0.20



Contrastive learning

We use a Simple Framework for Contrastive Learning of Visual Representations (SimCLR)
[29] to optimize a contrastive loss function and in turn, maximize the mutual information
between biologically correlated views. Specifically, we sample views G, and G,, for every
antibody G, first by randomly choosing one sampling scheme for extracting substructures and
then, randomly selecting one of the two noise functions (i.e. “Identity” or “Random edge
masking”) with equal probability. The graph representations h, and h,, of two views will be
obtained by applying the structure-based encoder we described in “Approach & Methods”.
Then, 2-layer MLP (Multi-Layer Perceptron) projection head is used to map the representations
to a lower-dimensional space, indicated as z, and z,. At the end, an InfoNCE (Noise-
Contrastive Estimation) loss function is defined by differentiating views from the same or
different antibodies using their similarities [33]. Specifically, for a positive pair x and y, we
treat views from other antibodies in the same mini-batch as negative pairs. Mathematically, the

loss function for a positive pair of views x and y will be written as:

exp(sim(zx, zy)/r)
Y321 Lenjexp(sim(zy, z,)/7)

Lyy= —log

Here, B denotes the batch size, T indicates the temple2gserature, I, € {0,1} is an indicator

function that is equal to 1 if and only if k # x. The similarity function sim(u, v) is obtained

by the cosine similarity between u and v.

Evaluation metrics

Now, we are going to discuss the evaluation metrics for antigen-specificity prediction. As a
revision, our goal is to answer the following question: whether an antibody binds to SARS-
CoV-2, HIV, or Hemagglutinin Influenza (HA), which can be regarded as a multi-class

binary classification task.

The 1% metric, antibody-centric maximum F-score F,,,, is obtained by first computing the
precision and recall for each antibody and then taking the average score over all antibodies.
Mathematically, for a given target antibody i and a decision threshold t € [0,1], the precision

and recall will be evaluated as follows:



Yy 1f € P(6)NT;]
Xr 1[f €]

precision;(t) =

and

Y l[f €P()NT;]
Xrilfern] -

recall;(t) =

in which f is a function for the antigen-specificity, T; is a set of experimentally determined
antigen terms for antibody i, P;(t) denotes the set of predicted terms for antibody i with
scores > t and 1[-] € {0,1} is an indicator function which is equal to 0 iff the condition is
false.

Subsequently, the average precision and recall over all antibodies at threshold t will be as:

1

precision(t) = m

z precision;(t)
i
and
1
recall(t) = Nz recall; (t),
i

in which N indicates the number of antibodies and M (t) represents the number of antibodies
on which at least 1 prediction was made above threshold t; in other words, |P;(t)| > 0.

Aggregating those 2 evaluation measurements, the maximum F-score will be denoted as the
maximum value of F-measure over all thresholds. In other words,

2 * precision(t) * recall(t)}

F... =
max mtax{ precision(t) + recall(t)

The 2" metric, pair-centric Area Under Precision-Recall Curve AUPRC,,;; , is obtained as the

average precision scores for all antibody-antigen pairs, which is actually the micro average
precision score for multiple binary classification.



Experimental results
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auroc@micro: 0.955297
auprc@micro: 0.92718

fl max: 0.87721

Geometry-Aware Relational Graph Neural Network

aurocf@micro: 0.962669
auprc@micro: 0.93664

fl max: 0.883634

Geometry-Aware Relational Graph Neural Network + Edge Message Passing Layer

As seen from the above results, both of the explored methods indicate considerably good
results for Fp,,x measurement, in which binary cross entropy loss for training shows the
desired decreasing curve throughout the 80 epochs. Moreover, Area Under Precision-Recall
Curve (AUPRC), and Area Under Receiver Operating Characteristic (AUROC) reveal the
fluctuating curves for the validation dataset, along with accurate evaluation metrics during

their final epochs.

Ablation studies
To analyze the contribution of different subcomponents in the explored methods, we will

perform ablation studies on the antigen-specificity task. The results are shown in Table 5.1.

Method Finax

Multiview contrastive learning 0.884
- subsequence + identity 0.851
- subspace+ identity 0.862
- subsequence + random edge masking 0.858
- subspace + random edge masking 0.870

Table 5.1: Ablation studies on antibody-antigen datasets



6. Discussion

Different augmentations in Multiview contrast

We explore the contribution of every augmentation approach introduced in the Multiview
Contrast method (previous page). Instead of randomly sampling cropping and noise functions,
we will pretrain our model with 4 deterministic combinations of augmentations,
correspondingly. As indicated in Table 5.1, all the four combinations yield good results, which
suggests arbitrary combinations of the introduced cropping and noise schemes can yield
informative partial views of antibodies. Moreover, we can also see that the results of Subspace
Cropping are usually better than those of Subsequence Cropping with different noise functions,
concluding that it is an efficient method to utilize 3D information to extract meaningful

antibody substructures.

Protein latent space visualization
In order to evaluate the quality of the antibody embeddings learned by the pretraining method,

we will visualize the latent space of the model pretrained by Multiview Contrast. Particularly,
we will utilize the pretrained model to extract the embeddings of all the proteins from Alpha-
Fold database, and these embeddings will be mapped to the 2-dimensional space by UMAP
[34] for visualization. Referring to [35], we will highlight the 20 most common superfamilies
within the database by distinct colors. The visualization results are indicated in Fig. 6.1. We
can vividly observe that the pretrained model groups the same superfamily proteins together
and divide the ones from different superfamilies apart. In fact, it succeeds in clearly separating
three superfamilies, which are represented as Protein kinase superfamily, Cytochrome P450

family, and TRAFAC class myosin-kinesin ATPase superfamily.
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Figure 6.1: Latent space visualization of Multiview contrastive learning on the protein database



7. Future Research Plan & Proposal

Once we identify the epitope-paratope level interactions, binding sites, and neutralization
activities available from antibody datasets, we can start experimenting with the benchmark
architectures for contrastive representations based upon SImCSE [10] and SimCLR [11], along
with appropriate graph-level embeddings for pathogenic antigens. Further data augmentation
techniques for amino acid level representations may also be applied to improve the benchmark
results of previous methods and efficiently create the massive antibody repertoire targeting new
pathogens.
In recap, our summary for future work and ablation studies in this project can be
summarized as follows:
e Obtain 3D surface/mesh-level representations of antibody structures using Geometric
Deep Learning, including in silico synthetic datasets
e Propose a novel data augmentation mechanism for antibody data to produce additional
synthetic structures for learning better representations using SIimCSE and SimCLR

algorithms.
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